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Abstract 16 

Light intensity and spectral distribution within plant canopies provides insights into the 17 

effects of optimizing canopy architecture on light use efficiency. Breeding crop 18 

varieties with a “smart” canopy, characterized by erect upper-layer leaves and flat 19 

lower-layer leaves, can be supported with a 3D canopy model which can simulate light 20 

distribution for a particular canopy architecture. Leaf optical properties are required 21 

parameters for such canopy photosynthesis model to accurately predict canopy 22 

microclimate and hence photosynthetic efficiency. In this study, we developed a 23 

strategy to estimate the leaf optical properties based on leaf anatomical features. We 24 

developed a Directional Spectrum Detection Instrument (DSDI) system and associated 25 

Bidirectional Reflectance Distribution Function (BRDF) analysis software to precisely 26 
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describe leaf light distribution. BRDF parameters were quantified with high accuracy 27 

(𝑅2 >  0.95) for adaxial and abaxial surfaces of maize, rice, cotton, and poplar leaves 28 

across canopy layers. Leaf phenotypic traits, surface roughness, pigments content, 29 

specific leaf weight and thickness were also assessed. Ensemble learning (EL) model 30 

showed excellent predictive performance for leaf optical properties based on 31 

phenotypic traits with R2 between 0.83 and 0.99. Compared to existing BRDF 32 

measurement systems, the DSDI achieves broader angular coverage (-π/36 to 35π/36) 33 

via mechanical rotation design, and the ensemble learning model establishes the first 34 

direct predictive relationship between BRDF parameters and leaf phenotypic traits. This 35 

work presents a new approach to quantify leaf optical properties and offers predictive 36 

models for leaf optical properties, which can support canopy light distribution 37 

prediction and hence support design leaf features for higher canopy photosynthesis 38 

efficiency. 39 

Introduction 40 

Canopy photosynthesis is the sum of the photosynthesis of all aboveground tissues, 41 

which correlates with biomass accumulation and improving canopy photosynthesis is a 42 

major breeding target for crop high light use efficiency [1]. Canopy architecture 43 

primarily determines the absorption and distribution of solar light within a canopy [2] 44 

and controls the use of light energy to achieve a greater canopy photosynthetic rate [3,4]. 45 

The intensity of light and spectral signals, such as red/far red ratio, regulates plant 46 

morphology, which also influences canopy photosynthesis [5]. Improving plant 47 

architecture for an optimal canopy architecture under higher planting density is widely 48 

used in crop breeding and cultivation for higher crop yield [6,7]. The rice ideotype 49 

which includes erect top leaves and medium number of tillers has been widely applied 50 

in breeding [8]. The maize “smart” canopy with small leaf angle for top leaves and large 51 

leaf angle for bottom leaves is suitable for higher planting density, which is a major 52 

contributor to maize yield in the past decades [9]. Similarly in soybean, plants with 53 

compact structures and narrower leaves are adapted for high density planting for higher 54 
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yield [10,11]. Plant architectural traits, including plant height and leaf angles, are also 55 

extensively optimized for other crops, such as wheat and cotton [12,13]. Though with 56 

these successes, designing and optimizing canopy architecture still represents a major 57 

target for current crop breeding. Studying genetic mechanisms underlying various plant 58 

architectural features is also a major research area in current plant biology research 59 

community.  60 

By constructing a 3D canopy photosynthesis model, optimal plant architecture can 61 

be studied [14,15]. 3D canopy models can be built based on either mathematical models 62 

parameterized with plant structural parameters [16], data directly obtained from 3D 63 

plant phenomics platform, such as multi-view stereo imaging [17,18] and lidar [19,20]. 64 

Accurately characterization of light distribution within a canopy is critical for designing 65 

ideal canopy architecture for higher canopy photosynthesis efficiency [21,22]. Ray 66 

tracing algorithm has been used to effectively simulate the absorbed light, transmitted 67 

light, and reflected light after light ray reaches the leaf surface [23,24]. The spatial 68 

distribution pattern of the transmitted and reflected light, which is determined by leaf 69 

optical properties, is essential for the accurate prediction of light environment inside a 70 

canopy with a ray tracing algorithm.  71 

Leaves mainly absorb visible light between wavelengths 400-700 nm. The 72 

absorption coefficient is usually higher than 0.9 for blue photons and higher than 0.7 73 

for green photon. The pigment content has a major influence on the absorption 74 

coefficient. Leaves absorb less infrared light with wavelength 700-1000 nm [25,26]. 75 

The spatial distribution patterns of reflected infrared light is more uniform than those 76 

for visible light [27]. Leaf surface roughness and pigment content significantly 77 

influence the distribution of reflected light [28,29]. Leaf surface roughness varies 78 

among plant species, e.g., the roughness of rice leaf is high while the roughness of 79 

cotton leaf is low. The light incident angle also affects the distribution of reflected light 80 

[30]; leaf angle similarly influences light distribution in canopy. The adaxial and abaxial 81 

surfaces have different optical properties due to the cellular anatomy of leaf section and 82 

the chlorophylls distributions inside a leaf, which differ dramatically between flat and 83 
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vertical leaves [31].  84 

Although recent advances in 3D canopy modeling and smart breeding have 85 

highlighted the critical role of leaf optical properties in regulating canopy 86 

photosynthesis, practical evaluation of these parameters remains challenging. Existing 87 

canopy photosynthesis models often incorporate radiative transfer but typically assume 88 

uniform optical properties among leaves [32], overlooking the variability caused by 89 

environmental conditions and developmental stages, which reduces the predictive 90 

power of canopy photosynthesis models in both mechanistic studies and breeding 91 

applications. Optical instruments can directly measure leaf reflectance and 92 

transmittance [33], yet these measurements are slow and impractical for large-scale 93 

phenotyping. This limitation hampers the integration of leaf-level optical diversity into 94 

large-scale phenotyping and canopy photosynthesis modeling. In contrast, predicting 95 

optical parameters from measurable biochemical and structural traits offers a rapid 96 

alternative for characterizing leaf optical diversity and improving the parameterization 97 

of canopy photosynthesis models. Because anatomical structures and pigment 98 

compositions fundamentally determine leaf scattering and absorption [34], establishing 99 

quantitative relationships between these traits and optical parameters provides a 100 

scalable and efficient means of estimating leaf optical behavior across species and 101 

canopy positions. 102 

The spatial distributions of reflected light and transmitted light, can be described 103 

with a Bidirectional Reflectance Distribution Function (BRDF), which have specific 104 

parameters including roughness ( 𝜎(𝜆) ), diffuse reflection coefficient ( 𝑘(𝜆) ) and 105 

refractive index (𝑛(𝜆)) [35]. A variety of specialized equipment have been developed 106 

to sample the bidirectional and spectral reflectance of leaves and interpreted the spectral 107 

and directional variations in leaf reflectance with BRDF [36,37]. Among these 108 

parameters, 𝜎(𝜆)  is primarily affected by epidermal micromorphology and surface 109 

irregularities [38]; 𝑘(𝜆) depends on mesophyll scattering related to leaf thickness and 110 

internal spaces [39]; and 𝑛(𝜆)  is influenced by biochemical composition [40]. 111 

Therefore, BRDF parameters are inherently linked to leaf anatomy, pigment 112 
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composition, and physiological traits. Predicting BRDF parameters from leaf anatomy 113 

and physiological traits can be a potential efficient method. However, the quantitative 114 

relationships between BRDF parameters and these leaf traits remain poorly understood, 115 

and no predictive model currently exists for estimating BRDF parameters directly from 116 

leaf anatomical and physiological data. 117 

To bridge this gap, we propose a scalable, phenomics-oriented approach to quantify 118 

leaf optical properties from measurable anatomical and biochemical traits. We 119 

developed a Directional Spectrum Detection Instrument (DSDI) that allows efficient 120 

measurement of leaf Bidirectional Reflectance Distribution Function (BRDF) across a 121 

broad range of illumination and viewing angles. The BRDF model was parameterized 122 

using roughness (𝜎(𝜆) ), diffuse reflection coefficient ( 𝑘(𝜆) ), and refractive index 123 

(𝑛(𝜆) ), which link physical surface scattering and internal absorption processes to 124 

measurable leaf traits. Moreover, we established an ensemble learning (EL) framework 125 

to predict BRDF parameters based on leaf phenotypic traits such as thickness, specific 126 

leaf weight, pigment content, and surface roughness. This integration of optical 127 

measurement, modeling, and data-driven prediction establishes a new pathway toward 128 

computational phenotyping of optical traits, facilitating the parameterization of 3D 129 

canopy models for photosynthesis simulation. 130 

Table 1. Description of symbols used in the paper. 131 

Symbol Quantity Unit（symbol） 

𝑳 Illumination direction vector None 

𝑽 Viewing direction vector None 

𝑵 Normal to the sample vector None 

𝑯 Diagonal vector of 𝑳 and 𝑽 None 

𝝀 Wavelength Nanometer (𝑛𝑚) 

𝜽 Zenith angle  Degree (°) 

𝝋 Azimuth angle  Degree (°) 

𝜶 Angle between 𝑁 and 𝐻 Degree (°) 

𝜽𝒉 Half of the phase angle between 𝐿 and Degree (°) 
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𝑉 

𝒇𝒃𝒓𝒅𝒇 Bidirectional reflectance  Unit per steradian (𝑠𝑟−1) 

𝒇𝒔𝒂𝒎𝒑 Bidirectional reflectance of sample Unit per steradian (𝑠𝑟−1) 

𝒇𝒓𝒆𝒇 Bidirectional reflectance of reference Unit per steradian (𝑠𝑟−1) 

𝒇𝒔𝒑𝒆𝒄 Reflectance of specular component Unit per steradian (𝑠𝑟−1) 

𝒇𝒅𝒊𝒇𝒇 Reflectance of diffuse component Unit per steradian (𝑠𝑟−1) 

𝒅𝑨 Unit area Square meter (𝑚2) 

𝒅𝛀 Unit solid angle Steradian (𝑠𝑟) 

𝝓 Radiant flux Watt (𝑊) 

𝑳𝒓 Radiance 

Watt per square meter per steradian 

(𝑊 ⋅ 𝑚−2 ⋅ 𝑠𝑟−1) 

𝑬 Irradiance Watt per square meter (𝑊 ⋅ 𝑚−2) 

𝝈(𝝀) Roughness None 

𝒌(𝝀) Diffuse reflection coefficient None 

𝒏(𝝀) Refractive index None 

𝑪𝒉𝒍. 𝒂 Content of leaf chlorophyll a (𝑚𝑔 ⋅ 𝑑𝑚−2) 

𝑪𝒉𝒍. 𝒃 Content of leaf chlorophyll b (𝑚𝑔 ⋅ 𝑑𝑚−2) 

𝑪𝒉𝒍. 𝒂 + 𝒃 

Total chlorophyll content (sum of 𝐶ℎ𝑙. 𝑎 

and 𝐶ℎ𝑙. 𝑎) 

(𝑚𝑔 ⋅ 𝑑𝑚−2) 

𝑪𝒂𝒓. Leaf carotenoid content (𝑚𝑔 ⋅ 𝑑𝑚−2) 

𝐓 Leaf thickness (𝑚𝑚) 

𝐒𝐋𝐖 Specific leaf weight (𝑔 ⋅ 𝑚−2) 

𝝆 Leaf roughness measured by section None 

subscripts 𝜆, 𝑖 and 𝑣 represent the wavelength, illumination and viewing directions. 132 

Materials and Methods 133 

Experimental Design 134 

This study investigated the relationships between leaf phenotypic traits and 135 

Bidirectional Reflectance Distribution Function (BRDF) parameters for leaves from 136 

different plant species and from different canopy layers with a goal of developing a 137 
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predictive framework for leaf optical properties. As shown in Fig. 1, four plant species 138 

including maize (Zea mays L.), rice (Oryza sativa L.), cotton (Gossypium hirsutum L.) 139 

and poplar (Populus alba L.) were used in this study. The adaxial and abaxial surfaces 140 

of these leaves from both upper and lower layer of canopies were measured. 141 

Reflectance light distribution was measured with a custom-built Directional Spectrum 142 

Detection Instrument (DSDI), calibrated using a diffuse whiteboard standard (WS-1, 143 

PTFE-based Lambertian material; Ocean Insight Inc., USA) with reflectivity greater 144 

than 98% across 250–1500 nm. Leaf optical property related traits, including 145 

chlorophyll a(𝐶ℎ𝑙. a), chlorophyll b (𝐶ℎ𝑙. b), carotenoid content (𝐶𝑎𝑟. ), specific leaf 146 

weight (SLW), and thickness (T), were quantified with established protocols. Leaf 147 

surface roughness was determined using a custom developed image processing 148 

software, Roughness Calculator (RC), based on the leaf section microscopy images.  149 

To analyze the effects of species and canopy layer on leaf phenotypic traits, two-150 

way ANOVA was conducted using R software (version 4.5.1; R Core Team, 2023). The 151 

analysis was implemented with the car package for Type III sum-of-squares ANOVA 152 

[41], and post-hoc multiple comparisons were performed using the emmeans [42] and 153 

rstatix packages [43]. Independent t-test for group comparison was conducted in Excel 154 

(Microsoft Corporation, Redmond, WA, USA, version 365). BRDF parameter fitting 155 

was performed in MATLAB (MathWorks Inc., Natick, MA, USA, version 2024b), 156 

ensuring a high precision in parameter estimation. Furthermore, an ensemble learning 157 

model was developed in Python (version 3.8; Python Software Foundation) with a 158 

scikit-learn library [44]. Model performance was assessed through cross-validation and 159 

evaluated using metrics including coefficient of determination (𝑅2) and mean square 160 

error (𝑀𝑆𝐸) to validate predictive accuracy. 161 PR
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 162 

Figure 1. Schematic of the experimental design and the development of the predictive framework for 163 

optical properties. The upper- and lower-layer leaves from four plant species (maize, rice, cotton, and 164 

poplar), categorized into monocots and dicots, were used (A). Light was absorbed by a leaf and reflected 165 

and transmitted from the leaf. The reflect light includes specular and diffuse portion, and this reflect light 166 

distribution can be modeled with BRDF (B). Leaf section microscopy images were analyzed to obtain 167 

surface roughness data (G), which, along with other phenotypic traits (H), were fed into a predictive 168 

model. The DSDI platform was developed for measuring leaf reflect light distribution (C), calibrated for 169 

data accuracy with white board standard (D). Data of anatomical and physiological traits and the reflect 170 

light distribution data were used to develop ensemble learning (EL) model, including Support Vector 171 

Regression (SVR), Random Forest Regression (RFR), and Gradient Boosting Regression Tree (GBRT), 172 

for accurate prediction of BRDF parameters, roughness (σ(λ)), diffuse reflection coefficient (k(λ)) and 173 

refractive index (n(λ)). This study develops the BRDF parameter acquisition tools and its prediction 174 

model based on the data of leaf anatomical and physiological traits, which supports canopy light-use 175 

efficiency modeling.  176 

Plant Materials 177 

The experiment was conducted in 2021 at the Institute of Plant Physiology and Ecology, 178 

Chinese Academy of Sciences (CAS), Shanghai, China. Four plant species were used 179 

in this study including maize, rice, cotton and poplar. All plants were grown in a 180 

greenhouse with controlled environment, day/night temperatures of 25/18℃ and a 181 

relative humidity of 60-70%. At the time of measurement, maize plants were 182 
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approximately 2.0 m tall at the silking stage, rice plants at the heading stage were about 183 

0.9 m tall, cotton plants at the boll-forming stage were about 1.5 m tall, and poplar 184 

plants were about 2.0 m tall at the vigorous growth stage. To capture the variability in 185 

optical properties across canopy layers, leaves were sampled from both upper and lower 186 

canopy positions, defined as the upper and lower halves of the plant height, respectively. 187 

For each species, at least 3 plants were used and at least 6 leaves from each plant were 188 

used for the measurements, with fully expanded leaves sampled from both upper and 189 

lower layers in canopy. For each leaf, both adaxial and abaxial surfaces were measured 190 

separately. 191 

Ray tracing simulations for evaluation of canopy scatter light distribution 192 

To quantify the effect of BRDF parameters on the spatial distribution of scattered light 193 

within plant canopies, ray tracing simulations were performed using a 3D rice canopy 194 

model (cultivar 9311 at the heading stage). The simulations were conducted with an 195 

optimized version based on the original ray tracing software (fastTracer, published by 196 

Song et al, 2013) [45]. The optimized version of fastTracer is available at 197 

https://github.com/PlantSystemsBiology/fastTracerPublic), which was further 198 

modified for this study to incorporate variable BRDF parameters. The 3D canopy model 199 

consisted of triangular leaf facets reconstructed from morphological measurements, 200 

representing the realistic spatial architecture of rice plants. Each photon was tracked 201 

through interactions with leaf surfaces, including reflection, transmit, and absorption, 202 

which were governed by the Cook–Torrance BRDF model. 203 

To evaluate the individual and combined effects of the BRDF parameters, 204 

simulations were conducted under different combinations of leaf roughness (𝜎), diffuse 205 

reflection coefficient (𝑘), and refractive index (𝑛). The tested parameter sets included 206 

(𝜎, 𝑘, 𝑛) = (0.3, 0.01, 1.0), (0.3, 0.35, 1.0), (1.0, 0.01, 1.0), (0.3, 0.01, 2.2), (1, 0.35, 207 

2.2) and (0.3, 0.35, 2.2). For each configuration, photons were emitted from the light 208 

source and traced until absorption or exit from the canopy domain. The resulting 209 

scattered photosynthetic photon flux density (PPFD) values were recorded at different 210 

canopy heights. The canopy space was divided into multiple horizontal layers of equal 211 
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thickness, and the averaged PPFD were computed for each layer. 212 

Development and evaluation of the DSDI system 213 

The custom-built Directional Spectrum Detection Instrument (DSDI) is used to capture 214 

the angular spectrum from leaf surfaces (Fig. 1C). The DSDI setup incorporates an 215 

HPX-2000 high-power xenon light source (Detailed in Table S1) and an HR2000 high-216 

resolution fiber optic spectrometer (Detailed in Table S2) (Ocean Insight Inc., USA). 217 

The distribution of reflectance on a leaf surface is typically characterized by the angular 218 

distribution of zenith (𝜃) , and azimuth (𝜑)  angles in spherical coordinates, 219 

visualized as the reflection hemisphere [46]. Figure 2A illustrates the geometric 220 

relationship between incident and reflection angles, with the upper hemisphere 221 

representing the reflecting hemisphere. The measurement platform in DSDI has three 222 

axes (Fig. 2B), first, the leaf holder can be rotated with the Z-axis determining the 223 

illumination angle (𝜃𝑖 , 𝜑𝑖); second, the detection ring can be rotated with the Y-axis 224 

and third, the collimation lens can be slide on the detection ring. The detection ring and 225 

the collimation lens together determines the detecting angle (𝜃𝑣, 𝜑𝑣) . When leaf 226 

sample was placed into a leaf holder, the collimation lens then rotated around the leaf 227 

holder on a circular track, capturing measurements from multiple angles. For detailed 228 

information, see supplementary material (Fig. S1-S3).  229 

To validate the accuracy of DSDI in the measurement of reflectance from different 230 

angles, we conducted tests using a Lambertian whiteboard with its reflectance 231 

following the Lambert cosine law, i.e., the reflect light intensity is linearly correlated 232 

with the cosine of the detection angle [47,48]. Reflect light intensity at different 233 

detection angles was measured and recorded for the whiteboard at incidence angles of 234 

0, 𝜋/6 and 𝜋/4, respectively. (Fig. 2C-E). A linear relationship was derived between 235 

reflectance intensity and cosine of the detection angle ( 𝑅2 >  0.99 ) (Fig. 2F-H), 236 

confirming that DSDI provides reliable spatial light distribution measurements.  237 
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 238 

Figure 2. The design and verification of DSDI. A: the geometric design of the optical platform in DSDI, 239 

including rotating the leaf holder determining the illumination angle (𝜃𝑖, 𝜑𝑖), rotating detection ring and 240 

sliding collimation lens determining the viewing or detecting angle (𝜃𝑣, 𝜑𝑣) . B: the measurement 241 

diagram of DSDI. C-E: data of reflectance intensity measured with a standard whiteboard at incidence 242 

angles of 0, 𝜋/6 and 𝜋/4, and plotted in a polar coordinate system. Yellow arrows indicate the incident 243 

light direction. F-H: the linear relationship between reflectance intensity and cos(𝜃)  at the three 244 

corresponding incidence angles (0 , 𝜋/6  and 𝜋/4 ). 𝜃  represents the angle between the viewing 245 

direction and the normal.  246 

Measurement of spatial distribution of reflection spectrum of leaves 247 

The directional distribution of transmitted light through leaves is physically similar to 248 

that of diffuse reflectance [33], and it can be approximated by a Lambertian function 249 

[49]. Therefore, this study focuses on the reflection distribution without separately 250 

analyzing the transmission component. The DSDI system was used to measure the 251 

reflection distribution of leaf as the following steps. Firstly, a leaf sample with area of 252 

1𝑐𝑚 × 2 𝑐𝑚 was attached on the leaf holder. The leaf surface should be flat, and the 253 

position of the primary vein was not used. Secondly, the sample holder was rotated to 254 

set the incident angle. The light source was turned on, and a light spot can be observed 255 

on the leaf. The illuminated area is round for incident angle 0 and elliptical for other 256 

incident angles. Thirdly, the detection ring was rotated to be horizontal for measuring 257 

the reflection and then the collimation lens was slide along the detection ring to measure 258 
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the reflect light spectrum at different reflection angles. Finally, the reflected light 259 

spectrum was measured and recorded by the spectrometer and the PC. 260 

We collected reflectance data across a broad spectrum (400 – 992 nm) and selected 261 

five representative wavelengths (468.36, 556.26, 673.46, 819.88, and 877.97nm) for 262 

further analysis as shown in Table 2. These wavelengths include the primary absorption 263 

(468.36 and 673.46 nm) for pigments such as 𝐶ℎ𝑙. 𝑎, 𝐶ℎ𝑙. 𝑏, and 𝐶𝑎𝑟; the maximum 264 

reflectance peak in the green light region (556.26 nm); the near-infrared (NIR) region 265 

(819.88 and 877.97 nm).  266 

Table 2. The selected wavelengths in the VIS-NIR spectrum. 267 

 268 

 269 

 270 

 271 

The definition of BRDF and its calculation based on the measured data with DSDI 272 

system 273 

The Bidirectional Reflectance Distribution Function (BRDF) is used to describe the 274 

spatial reflecting characteristics of light on rough surfaces, such as the leaf surface [50]. 275 

The general bidirectional reflectance (𝑓𝑏𝑟𝑑𝑓) can be defined as the ratio of radiance to 276 

irradiance, quantifying the contribution of the incident spectral irradiance from the 277 

direction (𝜃𝑖 , 𝜑𝑖) to the reflected spectral radiance in the direction (𝜃𝑣 , 𝜑𝑣) (Eq. 1). 278 

Radiance is the radiant flux (power) per unit projected area per unit solid angle (unit: 279 

W·sr⁻¹·m⁻²) and irradiance is the radiant flux incident on a surface per unit surface area. 280 

𝑓𝑏𝑟𝑑𝑓 =
𝐿𝑟(𝜆, 𝜃𝑖 , 𝜑𝑖 , 𝜃𝑣, 𝜑𝑣, )

𝐸(𝜆, 𝜃𝑖 , 𝜑𝑖)
(1) 281 

The 𝑓𝑏𝑟𝑑𝑓 represents the bidirectional reflectance, L denotes radiance, E refers to 282 

irradiance, 𝜆 is the wavelength, 𝜃𝑖 is incident zenith angle, and 𝜑𝑖 is the incident 283 

azimuth angle, 𝜃𝑣  is reflex zenith angle, and 𝜑𝑣  is the reflex azimuth angle. The 284 

symbols and units used in this formula are summarized in Table 1. 285 

According to the definitions, the radiance (𝐿𝑟) can be derived with the measured 286 

Waveband Blue Green Red Near-infrared 

Range(𝑛𝑚) 440-485 500-565 625-740 800-1300 

Wavelength(𝑛𝑚) 468.36 556.26 673.46 819.88, 877.97 
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reflected radiant flux (𝜙𝑣) at a view angle (𝜃𝑣) for a certain surface area (𝑑𝐴) and a 287 

certain solid angle (𝑑Ω) as Eq. 2. 288 

𝐿𝑟 =
𝜙𝑣

𝑑𝐴𝑐𝑜𝑠(𝜃𝑣)𝑑Ω
(2) 289 

 The irradiance (E) can be derived with the incident radiant flux (𝜙𝑖) on the surface 290 

area (𝑑𝐴) with Eq. 3. 291 

𝐸 =
𝜙𝑖

𝑑𝐴
(3) 292 

Substituting Eq. 2 and Eq. 3 into the Eq. 1, we obtain Eq. 4 that describes the 293 

bidirectional reflectance for light at wavelength (𝜆 ) with incident direction (𝜃𝑖 , 𝜑𝑖) 294 

and reflect direction (𝜃𝑣 , 𝜑𝑣): 295 

𝑓𝑏𝑟𝑑𝑓(𝜆, 𝜃𝑖 , 𝜑𝑖 , 𝜃𝑣 , 𝜑𝑣) =
𝐿(𝜆, 𝜃𝑖 , 𝜑𝑖 , 𝜃𝑣 , 𝜑𝑣)

𝐸(𝜆, 𝜃𝑖 , 𝜑𝑖)
=

𝜙𝑣

𝜙𝑖 cos(𝜃𝑣) 𝑑Ω
(4) 296 

Assuming that the reference whiteboard behaves as an ideal Lambertian surface 297 

with a hemispherical reflectance of 100%, the bidirectional reflectance of the reference 298 

surface is 1/𝜋 [51]: 299 

𝑓𝑟𝑒𝑓 =
𝜙𝑣,𝑟𝑒𝑓

𝜙𝑖 cos(𝜃𝑣) 𝑑Ω
=

1

𝜋
(5) 300 

Thus, the bidirectional spectral reflectance of the leaf sample can be calculated 301 

relative to the whiteboard as following equations: 302 

𝑓𝑠𝑎𝑚𝑝 =
𝜙𝑣,𝑠𝑎𝑚𝑝

𝜙𝑖 cos(𝜃𝑣) 𝑑Ω
=

𝜙𝑣,𝑠𝑎𝑚𝑝

𝜋 ⋅ 𝜙𝑣,𝑟𝑒𝑓

(6) 303 

Using the DSDI system, the measurement was performed for leaves and the 304 

reference whiteboard at several incident angles. For each incident angle ( 𝑖) , the 305 

𝜙𝑣,𝑠𝑎𝑚𝑝 and 𝜙𝑣,𝑟𝑒𝑓  at various reflection angles were measured. Then the bidirectional 306 

reflectance for leaf sample (𝑓𝑠𝑎𝑚𝑝) could be calculated with Eq. 6. 307 

In the practical operation of the DSDI system, all angular parameters are derived 308 

from the instrument’s mechanical scales. Due to minor manufacturing and assembly 309 

deviations, the initial position of the leaf holder does not correspond to a true 0° 310 

orientation but instead to 95°, which represents the perpendicular illumination reference 311 
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of the DSDI. Therefore, the leaf inclination angle 𝜃𝑙𝑒𝑎𝑓  was calculated with the scale 312 

of leaf holder (𝜃𝑙𝑒𝑎𝑓ℎ𝑜𝑙𝑑𝑒𝑟  ) as: 313 

𝜃𝑙𝑒𝑎𝑓 = 95° − 𝜃𝑙𝑒𝑎𝑓ℎ𝑜𝑙𝑑𝑒𝑟  (7) 314 

where 95° corresponds to the perpendicular illumination reference of the DSDI system. 315 

To facilitate the calculation of reflection geometry, a three-dimensional Cartesian 316 

coordinate system was established (Fig. 2B). The illumination direction was defined as 317 

the positive direction of the Y-axis, while the Z-axis points vertically downward. The 318 

X-axis was defined according to the right-handed Cartesian coordinate system, 319 

perpendicular to the YZ-plane. Since the light source remained fixed, the illumination 320 

direction vector (𝑳) was defined as: 321 

𝑳 = (0, −1,0) (8) 322 

Based on the leaf inclination angle, the leaf normal vector (𝑵) can be expressed as: 323 

𝑵 = (sin(𝜃𝑙𝑒𝑎𝑓) , − cos(𝜃𝑙𝑒𝑎𝑓) , 0) (9) 324 

During reflection measurements, the collimation lens slides along the detection 325 

ring to acquire reflectance at different angles. The ring’s scale reading corresponds to 326 

the viewing zenith angle (𝜃𝑣), while the rotation of the ring defines the viewing azimuth 327 

angle (𝜑𝑣). Accordingly, the viewing direction vector (𝑽) can be calculated as: 328 

𝑽 = (sin(𝜃𝑣) cos(𝜑𝑣) , − sin(𝜃𝑣) , sin(𝜃𝑣) sin(𝜑𝑣)) (10) 329 

Based on the illumination direction vector (𝑳) and the viewing direction vector (𝑽), 330 

the half-vector (𝑯) representing the bisector of illumination and viewing directions is 331 

calculated as: 332 

𝑯 =
𝑳 + 𝑽

√(𝑳 + 𝑽, 𝑳 + 𝑽)
(11) 333 

Thus, all directional vectors and angular parameters required for the BRDF model, 334 

including the illumination, viewing, normal and half vectors, were determined 335 

geometrically within this coordinate framework. 336 

The Cook-Torrance model for BRDF 337 

In this study, we employ the classic Cook-Torrance model to calculate BRDF. The 338 
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model was developed by Robert Cook and Kenneth Torrance in 1981 for surface with 339 

varying roughness based on geometric optics [52]. The reflectance of a rough surface 340 

lies between perfect diffuse and perfect specular reflectance, and can be expressed as 341 

the sum of the diffuse and specular components: 342 

𝑓𝑏𝑟𝑑𝑓 = 𝑓𝑠𝑝𝑒𝑐 + 𝑓𝑑𝑖𝑓𝑓 (12) 343 

For an ideal Lambertian surface, the bidirectional reflectance is 1/𝜋  [51]. The 344 

diffuse component of the bidirectional reflectance for a leaf surface can be expressed 345 

as Eq. 12 and the 𝑘(𝜆) is the diffuse reflection coefficient. 346 

𝑓𝑑𝑖𝑓𝑓 =
𝑘(𝜆)

𝜋
(13) 347 

The specular reflection component is more complex than the diffuse reflection. The 348 

leaf surface can be approximated as a collection of micro-facets with irregular 349 

orientations [53], as shown in Fig. 1B. Specular reflection in this model is described as 350 

light reflecting from micro-facets, with the reflection occurring between the 351 

illumination and the viewing.  352 

The leaf cuticle, which covers the epidermal cells, is considered a low-absorption 353 

medium compared to the leaf itself [54], allowing us to neglect its absorption. The light 354 

reflected from a single micro-facet can be defined by the Fresnel factor 𝐹(𝑛, 𝜃), which 355 

describes the proportion of non-polarized incident light reflected as specular reflection 356 

[55]: 357 

𝐹(𝑛, 𝜃ℎ) =
1

2
(

𝑛2(𝜆) + cos2(𝜃ℎ) − 1 − cos(𝜃ℎ)

𝑛2(𝜆) + cos2(𝜃ℎ) − 1 + cos(𝜃ℎ)
)

2

[1 + (
cos(𝜃ℎ) (𝑛2(𝜆) + cos2(𝜃ℎ) − 1 + cos(𝜃ℎ)) − 1

cos(𝜃ℎ) (𝑛2(𝜆) + cos2(𝜃ℎ) − 1 − cos(𝜃ℎ)) + 1
)

2

] (14) 358 

The distribution of the micro-facet slopes is defined by the Beckmann distribution 359 

𝐷(𝛼, 𝜎), which can be expressed as [56]: 360 

𝐷(𝛼, 𝜎) =
𝑒

−(
tan(𝛼)

𝜎 )
2

𝜎2 cos4(𝛼)
(15) 361 

During illumination, micro-facets may shield and mask each other, causing light 362 

attenuation [37]. The geometric attenuation factor 𝐺(𝑳, 𝑵, 𝑽, 𝑯) describes this effect, 363 

capturing the reduction of light due to multiple reflections between micro-facets [57]: 364 
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𝐺(𝑳, 𝑵, 𝑽, 𝑯) = min (1,
2(𝑽, 𝑵)(𝑵, 𝑯)

(𝑽, 𝑯)
,
2(𝑳, 𝑵)(𝑵, 𝑯)

(𝑽, 𝑯)
) (16) 365 

Here, 𝑯  is the angular bisector vector and can be calculated with Eq. 11 by 366 

assuming that 𝑯 is the normal vector of the micro-facet [36].  367 

In summary, the Cook-Torrance BRDF on the leaf surface can be expressed as: 368 

𝑓𝑏𝑟𝑑𝑓 =
𝐹(𝑛(𝜆) , 𝜃ℎ) ⋅ 𝐷(𝛼, 𝜎(𝜆) ) ⋅ 𝐺(𝑳, 𝑵, 𝑽, 𝑯)

2𝜋2(𝑳, 𝑵)(𝑵, 𝑽)
+

𝑘(𝜆)

𝜋
(17) 369 

BRDF Parameters Fitting Algorithms 370 

According to the Cook-Torrance model of BRDF, three critical parameters (roughness 371 

(𝜎(𝜆)), diffuse reflection coefficient (𝑘(𝜆)), and refractive index (𝑛(𝜆))) of the BRDF 372 

determines leaf optical properties. These parameters influence reflectance distribution, 373 

which is vital for understanding light behavior on a leaf surfaces. The optimization of 374 

BRDF parameters was constrained by setting fixed upper and lower bounds for each 375 

parameter during the fitting process [36]. These bounds ensured that the parameter 376 

values remained within physically meaningful and biologically relevant ranges, thereby 377 

improving the robustness and accuracy of the optimization. The roughness, 𝜎(𝜆) , 378 

describes the surface texture and corresponds to the root mean square (RMS) of the 379 

slope of the micro-facets on the surface [49]. It ranges from 0 (perfectly smooth) to 1 380 

(highly rough). A higher 𝜎(𝜆) value indicates more irregular and scattered reflected 381 

light, while a lower value results in more directional and concentrated reflections [58]. 382 

The diffuse reflection coefficient, 𝑘(𝜆) , represents the proportion of diffuse light 383 

reflected from the surface, with values between 0 and 1. The 𝑘(𝜆) value of 0 indicates 384 

no diffuse reflection, while a value of 1 suggests complete diffuse reflectance. The 385 

refractive index, 𝑛(𝜆) , quantifies the extent to which light attenuates when passing 386 

through the leaf medium and typically ranges from 1 to 5 for leaves [59]. 387 

To accurately characterize the BRDF parameters of leaf surfaces, we employed two 388 

fitting methods: Least Squares curve fitting and Adaptive Grid Search. The least squares 389 

method is a traditional regression technique that estimates parameter values by 390 

minimizing the sum of squared residuals between observed and fitted values. Using 391 

MATLAB’s least squares fitting function, we estimated the BRDF parameters. This 392 
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method is computationally efficient and suitable for samples with relatively simple 393 

surface structures. An adaptive grid search algorithm was developed in this study, and 394 

this algorithm utilized a 2-layered grid (step sizes of 1 × 10−2  and 1 × 10−4 395 

respectively) structure to incrementally optimize each parameter, providing a more 396 

precise approximation of true values. By iteratively narrowing the search range and 397 

increasing resolution, this method gradually converges on the optimal solution. The 398 

source code of Python for adaptive grid search algorithm was available at 399 

https://github.com/PlantSystemsBiology/brdf.  400 

The solver was applied with initial values ( 𝜌0 , 𝑘0 , 𝑛0 ) = (0.5, 0.5, 3) and 401 

parameter bounds 𝜌 ∈ [0, 1],  𝑘 ∈ [0, 1],  𝑛 ∈ [1, 5]  (implemented as [0.01, 0.01, 402 

1.1]–[0.99, 0.99, 5] for numerical stability). Model performance was evaluated by 403 

coefficient of determination (𝑅2) , root mean square error (RMSE) and residual 404 

analysis, providing reliable estimations of BRDF parameters for each wavelength and 405 

leaf sample. 406 

Quantification of Leaf Roughness Using RC 407 

Leaf cross-sections were prepared by manually cutting 50-80 𝜇𝑚  segments of fresh 408 

leaves with a sharp blade [60], and images of the leaf sections were obtained using an 409 

optical microscope (Leica DM2500, Leica Microsystems, Wetzlar, Germany). A 410 

custom software tool, Roughness Calculator (RC), was developed to quantify leaf 411 

roughness (software available at https://github.com/PlantSystemsBiology/brdf). RC 412 

software calculated leaf roughness with the image of leaf cross-section. A region of 413 

interest (ROI) of leaf surface was selected from the leaf cross-section image (shown by 414 

the blue box) and the exact inner edge length 𝑙𝑖𝑛𝑛𝑒𝑟  (blue line) based on individual 415 

pixel counts was calculated. Then, the smoothed outer edge length 𝑙𝑜𝑢𝑡𝑒𝑟  (red line) 416 

was determined using a Gaussian filter (shown in Fig. 3). The ratio 𝜌, calculated with 417 

Eq. 18, provides a reliable metric for leaf surface roughness. To mitigate the effects of 418 

leaf tips and main veins, ROI can be manually selected instead of the whole section 419 

within the software. The ROI size was randomized, and five replicates were analyzed 420 

for each section image, to minimize user bias. For detailed methodology, see 421 
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supplementary material (Fig. S4-S8). 422 

𝜌 =
𝑙𝑖𝑛𝑛𝑒𝑟

𝑙𝑜𝑢𝑡𝑒𝑟

(18) 423 

 424 

Figure 3. Quantification of leaf surface roughness using the Roughness Calculator (RC) software. The 425 

software calculated two edge lengths of the leaf section: the precise inner edge length (𝑙𝑖𝑛𝑛𝑒𝑟, blue line) 426 

based on individual pixel counts and the smoothed outer edge length (𝑙𝑜𝑢𝑡𝑒𝑟 , red line) based on a Gaussian 427 

smoothing filter. Their ratio (𝜌=linner/louter) represented the roughness metric (data were shown at the right 428 

side of the software). Manual selection of the region of interest (ROI) (light blue box) allowed analysis 429 

for a specific part of leaf surface.  430 

Measurement of Physiological and Biochemical Traits 431 

Leaf thickness (T) was measured using a micrometer. Small leaf discs were punched 432 

from the leaves avoiding the primary veins for determining the content of chlorophyll 433 

a (𝐶ℎ𝑙. 𝑎 ), chlorophyll b (𝐶ℎ𝑙. 𝑏 ) and carotenoid (𝐶𝑎𝑟. ), following an established 434 

protocol [61]. Absorbance (A) values were measured at wavelengths of 663 nm, 645 435 

nm and 470 nm in a spectrophotometer. The calculation formulas for these pigments 436 

were as follows: 437 

𝐶ℎ𝑙. 𝑎 = 12.72𝐴663 − 2.59𝐴645 (19) 438 

𝐶ℎ𝑙. 𝑏 = 22.88𝐴645 − 4.67𝐴663 (20) 439 

𝐶𝑎𝑟. =
1000𝐴470 − 3.27𝐶𝑐ℎ𝑙.𝑎 − 104𝐶𝑐ℎ𝑙.𝑏

229
(21) 440 

For measuring specific leaf weight (SLW), leaf samples with an area of ~6 cm2 441 

were collected. The areas of the leaf samples were first precisely measured and then the 442 
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leaf samples were dried at 105°C for 10 minutes and 80°C until a constant weight. The 443 

specific leaf weight (SLW) was calculated by dividing the dry weight of the leaf sample 444 

by the area: 445 

SLW =
𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

 𝑎𝑟𝑒𝑎
(22) 446 

Development of an Ensemble Learning Model for Predicting Leaf Optical 447 

Properties Based on Phenotypic Traits 448 

In this study, we developed an ensemble learning (EL) model to predict the BRDF 449 

parameters of leaves with their phenotypic traits utilizing data from 270 data entries. 450 

The EL model integrates Support Vector Regression (SVR), Random Forest Regression 451 

(RFR), and Gradient Boosting Regression Tree (GBRT) as base learners, with a 452 

stacking strategy using Linear Regression (LR) as the meta-learner (as shown in Fig. 453 

1I). 454 

Nine phenotypic traits were used as input variables, including leaf thickness (T), 455 

specific leaf weight (SLW), chlorophyll a ( 𝐶ℎ𝑙. 𝑎 ), chlorophyll b ( 𝐶ℎ𝑙. 𝑏 ), and 456 

carotenoid content ( 𝐶𝑎𝑟. ) total chlorophyll ( 𝐶ℎ𝑙. 𝑎 + 𝑏 ), chlorophyll a/b ratio 457 

((𝐶ℎ𝑙. 𝑎)/(𝐶ℎ𝑙. 𝑏) ), leaf surface roughness (𝜌 ), and spectral wavelength (𝜆 ). These 458 

traits collectively describe the biochemical, physiological, and structural characteristics 459 

that determine leaf optical behavior and thus the BRDF parameters. 460 

This EL framework was designed to improve predictive accuracy and 461 

generalization by leveraging the complementary strengths of multiple regression 462 

algorithms. The methodology involved several key steps:  463 

(1) Data Preprocessing and Standardization 464 

The features were standardized using z-score normalization. For each feature, the mean 465 

and standard deviation were calculated, then each sample’s feature value was 466 

transformed by subtracting the mean and dividing by the standard deviation. This 467 

process resulted in a distribution with zero mean and unit variance for all features, 468 

eliminating differences in units and scales among features for enhancing model 469 

convergence and predictive performance. 470 
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(2) Feature Selection 471 

We applied Recursive Feature Elimination (RFE) for feature selection. The RFE 472 

iteratively built models and eliminated the least significant features based on feature 473 

importance (e.g., model coefficients or feature importance scores). Using this method, 474 

five features were selected from the initial set of nine phenotypic traits according to the 475 

impact on the BRDF parameters. These five features served as independent variables 476 

for model training. The three BRDF parameters were set as target variables, and 477 

separate models were developed for each BRDF parameter.  478 

(3) Model Development and Hyperparameter Optimization 479 

The dataset was split into training and testing sets at an 8:2 ratio to ensure robust model 480 

training and evaluation. Using the five selected features, we developed three base 481 

models: Support Vector Regression (SVR), Random Forest Regression (RFR), and 482 

Gradient Boosting Regression (GBRT). For each base model, hyperparameter 483 

optimization was performed using 10-fold cross-validation combined with a grid search. 484 

By exhaustively testing predefined parameter combinations, a set of parameters that 485 

minimized the cross-validation mean squared error (MSE) for each model were 486 

identified.  487 

(4) Ensemble Model Construction 488 

We then constructed an ensemble learning (EL) model using a stacking approach. The 489 

optimized SVR, RFR, and GBRT models served as primary learners, and Linear 490 

Regression (LR) was employed as the secondary learner (meta-learner). This stacking 491 

approach allowed the EL model to combine predictions from the primary learners, 492 

enhancing the model’s overall generalization capability. The performance of the EL 493 

model was further evaluated using 10-fold cross-validation. 494 

(5) Model Performance Evaluation 495 

Finally, we evaluated the predictive performance of all models on the test set to verify 496 

their generalization abilities and practical applicability. We used Mean Squared Error 497 

(MSE) and the coefficient of determination (𝑅2) as evaluation metrics to compare the 498 

base models and the EL model. This allowed us to assess and compare the accuracy and 499 
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reliability of each model in predicting the BRDF parameters based on leaf phenotypic 500 

traits. 501 

Results 502 

Ray-tracing Analysis of BRDF Effects on Canopy Scattering 503 

To quantify the impact of BRDF parameters on canopy light environments, we 504 

incorporated the BRDF parameters in the ray-tracing software previously developed by 505 

Song et al [60] and performed ray tracing simulations using a 3D rice canopy model. 506 

The canopy light simulation focused on the distribution of leaf-scattered photosynthetic 507 

photon flux density (PPFD), as BRDF parameters mainly regulate the scattering 508 

behavior of leaf surfaces rather than atmospheric direct or diffuse light. 509 

 510 

Figure 4. The impact of diffuse reflection coefficient (k) on light distribution within a rice canopy. A: 511 

Scatter plot of scattered photosynthetic photon flux density (PPFD) versus canopy height. B: Vertical 512 

distribution of scattered PPFD across different canopy layers, presented as box plots. C: Mean scattered 513 

PPFD at each canopy layer. D-E: Frequency distribution of scattered PPFD under (D) k=0.01 and (E) 514 

k=0.35. F: Comparative histogram of scattered PPFD distributions for both scattering coefficients. 515 PR
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When varying the diffuse reflection coefficient (𝒌) between 0.01 and 0.35 while 516 

fixing leaf roughness (𝝈 = 0.3) and refractive index (𝒏 = 1), marked differences were 517 

observed in the spatial patterns of scattered PPFD (Fig. 4A–C). Canopy upper layers 518 

exhibited substantially higher scattered PPFD under 𝒌  = 0.35 compared with 𝒌  = 519 

0.01. The proportion of leaf facets exposed to medium light intensity (40–80 520 

𝝁𝒎𝒐𝒍 𝒎⁻² 𝒔⁻¹) increased under low 𝒌, whereas the fraction under high light intensity 521 

(80–150 𝝁𝒎𝒐𝒍 𝒎⁻² 𝒔⁻¹)  declined. These findings indicate that a lower diffuse 522 

reflection coefficient leads to a more homogeneous scattered light distribution within 523 

the canopy. 524 

Further simulations altering 𝝈  (0.3 and 1.0) and 𝒏  (1.0 and 2.2), as well as 525 

combined parameter sets (e.g., 𝒌  = 0.01 with 𝒏  = 1.0, 𝒌  = 0.35 with 𝒏  = 2.2), 526 

showed that all three parameters substantially influence canopy-level radiation patterns 527 

(Fig. S9-S13). These results emphasize that accurate BRDF parameterization is 528 

essential for simulating canopy radiative transfer and photosynthesis. 529 

Variations of leaf anatomical and physiological traits at upper and lower canopy 530 

layers in four species 531 

To study the relationship between leaf optical properties and leaf anatomical and 532 

physiological traits, we chose four species including two monocotyledonous (maize, 533 

rice) and two dicotyledonous (cotton, poplar). The leaves at both upper and lower layers 534 

of these plants’ canopies were used for the measurement because the leaves acclimate 535 

to heterogeneous light environment in canopy. The phenotypic traits, including leaf 536 

thickness (T), specific leaf weight (SLW), chlorophyll a (𝐶ℎ𝑙. 𝑎), chlorophyll b (𝐶ℎ𝑙. 𝑏), 537 

and carotenoid content (𝐶𝑎𝑟.) were quantified. Two-way ANOVA revealed that both 538 

species and canopy layer had significant effects (𝑃 < 0.001) on T and SLW (Table S3). 539 

However, 𝐶ℎ𝑙. 𝑎, 𝐶ℎ𝑙. 𝑏, and 𝐶𝑎𝑟. contents were not significantly affected by either 540 

species or layer. Significant species and layer interactions were detected for 𝐶ℎ𝑙. 𝑎, 541 

𝐶ℎ𝑙. 𝑏 , and 𝐶𝑎𝑟. , indicating that pigment-related traits exhibited species-dependent 542 

responses to canopy position. 543 

The leaf thickness was not significantly different between upper and lower canopy 544 
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layers across species (Fig. 5A). SLW was significantly higher in lower-layer poplar 545 

leaves compared to upper-layer leaves ( 𝑃 <  0.05 )(Fig. 5B), possibly reflecting 546 

structural adaptations to lower light levels in the shaded canopy [62]. In contrast, SLW 547 

differences between canopy layers were less pronounced in maize, rice, and cotton. A 548 

positive correlation between SLW and T across species were observed, with poplar 549 

exhibiting the strongest correlation (𝑅2 > 0.79) and rice the weakest (𝑅2 > 0.45)(Fig. 550 

5H). The relationship between SLW and T was dramatically different among these four 551 

species, shown by the shaded areas representing the 95% confidence intervals, 552 

highlighting interspecies variation in leaf structure and density. We also calculated total 553 

chlorophyll (𝐶ℎ𝑙. 𝑎 + 𝑏) and the ratio of chlorophyll a to chlorophyll b (𝐶ℎ𝑙. 𝑎/𝐶ℎ𝑙. 𝑏). 554 

In maize, the chlorophyll content (𝐶ℎ𝑙. 𝑎 and 𝐶ℎ𝑙. 𝑏) was significantly higher in lower-555 

layer leaves (Fig. 5C-D, F), but rice exhibited the opposite pattern. As shown in Fig. 556 

5G, the chlorophyll a/b ratio was not different between canopy layers. In maize, the 557 

Car. in lower-layer leaves nearly doubled that in upper-layer leaves (Fig. 5E). We also 558 

quantified the leaf surface roughness (𝜌) based on the leaf section images using the 559 

developed Roughness Calculator (RC) software (Fig. 5I). The results indicate that the 560 

position of the leaf within the canopy has no significant effect on the 𝜌 of the leaf, 561 

with minimal differences between the adaxial (Fig. 5J) and abaxial (Fig. 5K) surfaces 562 

and consistent numerical trends. Rice leaves are the roughest, while poplar leaves are 563 

the smoothest. 564 
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 565 

Figure 5. Comparison of anatomical and physiological traits between upper- and lower-layer 566 

canopy leaves across four plant species. A-G: leaf thickness, specific leaf weight, chlorophyll a, 567 

chlorophyll b, carotenoid, total chlorophyll and chlorophyll a/b ratio in upper (red) and lower (blue) 568 

canopy leaves of maize, rice, cotton and poplar. Data were presented as mean ± SE (Standard Error).  569 

Significant differences between canopy layers were determined using Two-way ANOVA with Bonferroni 570 

multiple post-hoc tests, marked with * for 𝑃 < 0,05. H: linear regression between specific leaf weight 571 

and thickness across four species, with 95% confidence intervals. The regression lines and coefficient of 572 

determination (𝑅2) values were provided for each species. I: leaf section microscopy image examples. J-573 

K: leaf surface roughness for the adaxial side (J) and abaxial side (K).  574 

Spatial distribution of reflectance across species and canopy layers 575 

Using the DSDI system developed in this study, we performed the measurement of 576 

BRDF for the samples used for quantifying those anatomical and physiological traits 577 

above. Both adaxial and abaxial surfaces of the leaves were measured. Then, the Cook 578 

Torrance BRDF model was used to fit the data for deriving the BRDF parameters (Fig. 579 

6). The reflectance distribution on leaf surfaces generally consists of a narrow peak (e.g., 580 

the blue ellipse in Fig. 1B) in the specular reflection direction, superimposed on a more 581 

uniform diffuse background (e.g., the red semicircle in Fig. 1B) in the diffuse reflection 582 

directions [37]. The maximum specular peak, indicative of nearly pure specular 583 

reflection, reaches approximately 0.6 𝑠𝑟−1 within a small solid angle for poplar leaves 584 

at light incident angle 11𝜋/36  (Fig. 6). Notably, rice and cotton exhibit relatively 585 

uniform reflectance distributions across both adaxial and abaxial surfaces, with lower 586 

reflectance values compared to maize and poplar. This pattern may arise from specific 587 
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structural or biochemical properties in rice and cotton leaves that reduce directional 588 

reflection. 589 

Interestingly, the peak of the BRDF appears at an angle slightly larger than the ideal 590 

specular reflection angle, an effect influenced by the 𝜎(𝜆) [55]. Although the diffuse 591 

reflection component appears minor, it dominates when integrated over the entire 592 

hemisphere [37]. As the zenith illumination angle increases, all samples become more 593 

specular, with narrower and more pronounced BRDF peaks. Despite these common 594 

trends, the four species exhibit distinct BRDF profiles, allowing clear differentiation 595 

based on reflectance distribution patterns.  596 

The polar plots in Fig. 6 visualize these variations in reflectance distribution across 597 

species. Maize and poplar display pronounced specular reflections, particularly on the 598 

abaxial surfaces (Fig. 6A-B, G-H), while the BRDF peaks of rice and cotton (≈0.08 599 

sr⁻¹) were significantly lower than those of maize (0.15 sr⁻¹) and poplar (0.6 sr⁻¹) (P < 600 

0.01). (Fig. 6C-F). These findings underscore the importance of species-specific leaf 601 

surface adaptations in controlling light distribution within the canopy, with potential 602 

implications for enhancing photosynthetic efficiency. Such adaptations provide critical 603 

insights for refining light interaction models and highlight potential targets in breeding 604 

programs aiming at improving resource efficiency and productivity in diverse light 605 

environments.  606 
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 607 

Figure 6. Reflectance distribution for the adaxial and abaxial surfaces of four species in polar coordinate. 608 

The reflectance distributions for the adaxial (A, C, E, G) and abaxial (B, D, F, H) surfaces of leaves 609 

across four plant species: maize (A-B), rice (C-D), cotton (E-F), and poplar (G-H). For each figure panel, 610 

data of two illuminated angles (light incident angles) were shown.  For maize and poplar, 0 (left) and 611 

11𝜋/36 (right) were shown, and for rice and cotton, 0 (left) and 𝜋/4 (right) were shown. In the polar 612 

coordinate, the angle represents the reflection angle, the radial represents the value of the BRDF, with 613 

the pink asterisk representing the actual measured reflectance (𝑓𝑏𝑟𝑑𝑓) by the DSDI system and the green 614 

circle representing the fitted reflectance (𝑓𝑙𝑠𝑞) on the BRDF model by the least squares curve fit. Units 615 

of reflectance are given in 𝑠𝑟−1. 616 

Evaluation of BRDF parameter fitting 617 

To evaluate the performance of the BRDF parameter fitting, we applied two methods 618 

(𝑓𝑙𝑠𝑞  for Least Squares and 𝑓𝑎𝑔𝑠 for Adaptive Grid Search) to fit the BRDF, based on 619 

the actual measured reflectance of both leaf surfaces for upper and lower layer in 620 

canopies of the four species. The fitted reflectance values (𝑓𝑙𝑠𝑞  and 𝑓𝑎𝑔𝑠) were linear 621 

correlated (𝑅2 = 0.9512 and 0.9522) with the actual measured reflectance values (𝑓𝑏𝑟𝑑𝑓) 622 

(Fig. 7) at the measurement locations. Both methods provided high-quality fits to the 623 

measured data (𝑅2 >  0.95), effectively capturing the reflectance distribution on leaf 624 

surfaces. While the Adaptive Grid Search achieved slightly higher fitting accuracy due 625 

to its two-layer grid structure, but it required longer processing times. Therefore, we 626 

used the results from the Least Squares fitting method for further analysis. 627 
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 628 

Figure 7. Comparison between measured and fitted BRDF values using two fitting methods, Least 629 

Squares curve fit function (A) and the Adaptive Grid Search (B). flsq indicates BRDF values simulated 630 

using the Least Squares fitting method, and fags denotes values derived from the Adaptive Grid Search 631 

method. The black dotted line represents the 1:1 line, while the solid regression lines illustrate the 632 

relationship between fitted bidirectional reflectance (flsq and fags) and measured bidirectional reflectance 633 

(𝑓𝑏𝑟𝑑𝑓). The coefficient of determination (𝑅2) indicates the strength of correlation, with both methods 634 

showing strong agreement with the measured data ( 𝑅2 >  0.95 ). The scatter points present the 635 

bidirectional reflectance for various combinations of incident angles and reflection angles.  636 

Variations of BRDF Parameters Across Species and Canopy Layers 637 

There were significant variations for BRDF parameters across species, canopy layers 638 

and light wavelength (Fig. 8). Rice and cotton exhibited higher 𝜎(𝜆) values than that 639 

of maize and poplar for both two leaf surfaces and two canopy layers, indicating that 640 

the rice and cotton had irregular surface structure compared to maize and poplar. This 641 

higher roughness results in a relatively even reflectance distribution (Fig .6C-F). In 642 

contrast, maize and poplar show higher specular reflectance components (Fig. 6A-B, 643 

G-H) due to their lower 𝜎(𝜆) values, which increase the probability of concentrated 644 

light reflection [63]. The 𝜎(𝜆) was the same for different wavelengths, suggesting that 645 

this parameter was a property of leaf surface texture controlled by species-specific 646 

structural traits [64]. In contrast, the 𝑘(𝜆)  demonstrates marked sensitivity to 647 

wavelength, with the highest values at infrared region and relatively high at green light 648 

and lower for blue and red light (Fig. 8C-D). This phenomenon can be explained by the 649 

reflectance of leaf at these wavelengths. The wavelength-dependent nature of 𝑘(𝜆) 650 

aligns with general spectral reflectance properties, where longer wavelengths tend to 651 

exhibit more diffuse scattering [51]. The 𝑛(𝜆) shows limited wavelength sensitivity 652 

across species, with relatively high values in maize and poplar (Fig. 8E-F). Notably, 653 
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𝑛(𝜆) remains consistent between adaxial and abaxial surfaces, supported by the similar 654 

structure of leaf surface at both side of a leaf.  655 

 656 

Figure 8. Comparison of BRDF parameters across species (maize, rice, cotton, and poplar) and canopy 657 

layers (upper and lower) for both adaxial and abaxial leaf surfaces. These parameters included roughness 658 

𝜎(𝜆)  (A-B), diffuse reflectance coefficient 𝑘(𝜆)  (C-D) and refractive index 𝑛(𝜆)  (E-F). Each 659 

parameter was measured at multiple wavelengths (468.36 𝑛𝑚, 556.26 𝑛𝑚, 673.46 𝑛𝑚, 819.88 𝑛𝑚 660 

and 877.97 𝑛𝑚), represented by different colors. Data were presented as mean ± SE (Standard Error) 661 

for upper-layer (A, C, E) and lower-layer (B, D, F) leaves. Mean comparisons were conducted using 662 

Tukey’s HSD test at a significance level of 0.05. Different letters indicate significant differences among 663 

different wavelengths. 664 

Correlation Analysis Between Leaf Phenotypic Traits and BRDF Parameters 665 

To further understand the relationship between leaf phenotypic traits and optical 666 

properties, we performed a correlation analysis between relevant parameters, as 667 

presented in Fig. 9. The analysis reveals a highly significant positive correlation 668 

between 𝜎(𝜆)  and the leaf surface roughness 𝜌 , with no significant correlation 669 

between 𝜎(𝜆) and wavelength. This finding suggests that 𝜎(𝜆) primarily reflects the 670 
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intrinsic surface characteristics of the leaf, which can be reliably modeled through a 671 

linear relationship based on 𝜌  (Fig. S8). Additionally, 𝜎(𝜆)  shows a significant 672 

negative correlation with pigment content. 673 

The 𝑘(𝜆) was strong positive correlated with 𝜆, consistent with known spectral 674 

reflectance patterns in leaves, where light scattering generally increases with longer 675 

wavelengths (from visible light to infrared light)[65]. It should be noted that 𝑘(𝜆) was 676 

indeed correlated with the leaf absorbance for specific band of wavelength. 677 

The 𝑛(𝜆) exhibits significant negative correlations with both T and SLW. This 678 

indicates that denser and thicker leaves, which associated with higher SLW and T, tend 679 

to have lower refractive indices, thereby reducing light transmittance. Furthermore, 680 

there is a noteworthy negative correlation between 𝜎(𝜆) and 𝑛(𝜆), suggesting that as 681 

surface roughness increases, the refractive index decreases. This relationship implies 682 

that the leaf surface structure may be biologically connected to its internal composition, 683 

potentially affecting its refractive properties [66]. 684 

 685 

Figure 9. Correlation matrix between wavelengths, leaf traits and BRDF parameters. This heatmap shows 686 

the correlation coefficients among various parameters, including Leaf thickness (T), Specific leaf weight 687 

(SLW), Chlorophyll a (𝐶ℎ𝑙. 𝑎 ), Chlorophyll b (𝐶ℎ𝑙. 𝑏 ), Carotenoid content (𝐶𝑎𝑟. ), Total chlorophyll 688 

(𝐶ℎ𝑙. 𝑎 + 𝑏), Ratio of chlorophyll a to b ((𝐶ℎ𝑙. 𝑎)/(𝐶ℎ𝑙. 𝑏)), leaf surface roughness (𝜌), measurement 689 

wavelength (𝜆), and the BRDF parameters 𝜎(𝜆), 𝑘(𝜆), and 𝑛(𝜆). The wavelength feature represents 690 

the spectral band (400–992 nm) at which BRDF parameters were measured. The color scale represents 691 
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the strength and direction of correlations, with red indicating positive correlations and blue indicating 692 

negative correlations. The color intensity and size of the circle correspond to the strength of the 693 

correlation, as shown in the color bar. Pearson’s correlation coefficient was used, and significant 694 

correlations were marked with an asterisk (*) at the 𝑃 <  0.05 level. 695 

Predictive model for BRDF parameters with data of leaf anatomical and 696 

physiological traits 697 

To predict the BRDF parameters using the data of leaf anatomical and physiological 698 

traits, several base models and the ensemble learning model were trained and evaluated. 699 

Results show that the R2 of stacking ensemble learning (EL) model was generally 700 

higher than individual base models, including Support Vector Regression (SVR), 701 

Random Forest Regression (RFR), and Gradient Boosting Regression Tree (GBRT), in 702 

predicting BRDF parameters (𝜎(𝜆) , 𝑘(𝜆) , and 𝑛(𝜆) ). The comparison of models 703 

shows that the EL model consistently outperforms the individual models, yielding 𝑅2 704 

value 0.83-0.99 on the test set (Fig. 10A-C). However, all models demonstrated a 705 

relatively lower performance in predicting 𝑛(𝜆), likely due to additional influencing 706 

factors, such as water content, which affect light transmission properties in leaves [26]. 707 

To assess statistical significance in model performance, paired t-tests were 708 

conducted. Fig. 10D-F reveals that the EL model had a significantly lower Mean 709 

Squared Error (𝑀𝑆𝐸) than the SVR model (𝑃 <  0.05), though differences between the 710 

EL model and RFR or GBRT were not statistically significant. Feature importance 711 

analysis (Fig. 10G-I) indicated that leaf surface roughness (𝜌) and wavelength (𝜆) were 712 

the dominant predictors for BRDF parameters 𝜎(𝜆) , 𝑘(𝜆) , and 𝑛(𝜆) , followed by 713 

specific leaf weight (SLW) and pigment-related traits ((𝐶ℎ𝑙. 𝑎)/(𝐶ℎ𝑙. 𝑏)and 𝐶ℎ𝑙. 𝑏). 714 

These results suggest that both structural and spectral features play critical roles in 715 

determining leaf optical features. The learning curves (Fig. 10J-L) show the training 716 

and cross-validation error for each model, with the EL model achieving lower cross-717 

validation error, indicating improved generalization capability for unseen data. 718 

These findings confirm that the stacking EL model provides robust and accurate 719 

predictions for BRDF parameters by effectively integrating the strengths of each base 720 

model. The enhanced predictive power of the EL model offers a reliable framework for 721 
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modeling leaf optical properties based on leaf traits, which could be instrumental in 722 

refining canopy light distribution models and optimizing crop canopy. 723 

 724 

Figure 10. Performance of ensemble learning (EL) model for predicting BRDF parameters 𝜎(𝜆), 𝑘(𝜆), 725 

and 𝑛(𝜆) based on leaf traits. A-C: the scatter plots of actual versus predicted values for 𝜎(𝜆), 𝑘(𝜆), 726 

and 𝑛(𝜆), respectively, with a dotted line indicating the 1:1 relationship. D-F: the residual plots for each 727 

parameter, illustrating the residual distribution against predicted values. G-I: Importance of leaf 728 

phenotypic traits for predicting BRDF parameters in RFR model. J-L: present the learning curves, 729 

showing both training error (red line) and cross-validation error (green line) for the EL model during the 730 

training process for each parameter. Model comparisons were based on SVR (Support Vector Regressor), 731 

RFR (Random Forest Regressor), GBRT (Gradient Boosting Regressor), and a stacking EL model. The 732 

statistical metrics (MSE and 𝑅2) indicate the accuracy and robustness of the models, with the stacking 733 

model showing superior performance for most parameters. Statistical significance was assessed via 734 

paired t-tests, with a significance level of 𝑃 <  0.05, denoted by an asterisk (*). 735 

 736 

Discussion 737 

This study introduces an integrated framework combining optical instrumentation 738 
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(DSDI), physics-based modeling (BRDF), and data-driven analytics (EL) to quantify 739 

and predict leaf optical properties from anatomical and biochemical traits. Unlike 740 

traditional optical methods limited to slow reflectance or transmittance measurements, 741 

the proposed approach transforms optical characterization into a phenotype-driven, 742 

scalable, and computationally extensible process. The DSDI system enables precise 743 

measurement of directional reflectance across multiple angles, and the derived BRDF 744 

parameters (𝜎, 𝑘, and 𝑛) capture critical variations in surface roughness, scattering, 745 

and refractive properties that define leaf optical diversity among species and canopy 746 

layers. 747 

Integration of Optical Traits into Phenomics Frameworks 748 

Three-dimensional (3D) canopy photosynthesis models can be used to identify factors 749 

controlling canopy photosynthesis efficiency and deconvolute dominant factors 750 

governing canopy photosynthetic performance [67–70]. The distribution of direct light 751 

and diffuse light has been found to have a significant impact on the photosynthetic 752 

efficiency of the canopy [71]. Plant architectural traits, such as leaf type and leaf angle, 753 

also influences light distribution in plant canopy.  754 

One of the major predictions of such canopy photosynthesis models is that canopy 755 

with vertical light-green leaves in upper canopy coupled with horizontal dark-green 756 

foliar arrangements in lower canopy can help increase efficiency [63]. Such a canopy 757 

architecture can enhance photon flux homogeneity, simultaneously mitigating light 758 

saturation in apical leaves while alleviating light limitations in basal leaves. In this study, 759 

leaf anatomical and biochemical features are major determinants of optical properties 760 

of the leaf [72,73]. Our results reveal a statistically robust correlation between the 761 

roughness parameter (𝜎(𝜆)) of the BRDF model and leaf surface roughness (𝜌) derived 762 

from leaf cross-sectional microscopy quantifications (Fig. 9). The established linear 763 

regression model (Fig. S8) enables practical estimation of 𝜎(𝜆)  through rapid 𝜌 764 

characterization using microscopy-based measurements. This positive correlation 765 

suggests that leaf surface irregularities directly influence BRDF roughness, likely 766 

enhancing light scattering within the canopy. A pronounced correlation was observed 767 
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between the diffuse reflection coefficient ( 𝑘(𝜆) ) and wavelength (Fig. 9). This 768 

relationship aligns with the known wavelength dependence of leaf spectral reflectance 769 

[74]. The refractive index ( 𝑛(𝜆) ) demonstrated a negative correlation with leaf 770 

thickness and specific leaf weight (Fig. 9). This finding suggests that thinner leaves in 771 

the upper layer tend to transmit more light, which could be advantageous in light 772 

distribution and utilization for the whole canopy, particularly for species such as maize 773 

and poplar [75]. These new observations provide a new dimension of crop canopy 774 

engineering, i.e. manipulating the leaf optical properties instead of canopy architectures 775 

for a better light environment inside a canopy for greater efficiency.  776 

Effectiveness of the EL Model for Predicting Optical Properties 777 

Our ensemble learning (EL) model effectively predicted leaf optical properties (𝜎(𝜆), 778 

𝑘(𝜆)  and 𝑛(𝜆) ) based on phenotypic traits, with high accuracy (𝑅2 > 0.83  for all 779 

parameters, as shown in Fig. 10). However, the relative weaker predictive power 780 

for 𝑛(𝜆) (𝑅2 = 0.83) suggests unaccounted factors, such as leaf water content [26] or 781 

other tissues [54], influence the leaf refractive index. The dominance of 𝜌 highlights 782 

the critical role of epidermal microstructure in controlling the roughness parameter 783 

𝜎(𝜆), consistent with previous studies linking surface topology to directional scattering. 784 

The significant contribution of 𝜆  reflects the wavelength-dependent variation in 785 

pigment absorption and scattering, affecting both the diffuse reflection coefficient 786 

𝑘(𝜆) and refractive index 𝑛(𝜆) . Meanwhile, SLW and chlorophyll-related traits 787 

contributed secondarily, indicating that leaf thickness and pigment composition 788 

modulate internal light transmission and absorption. Together, these findings 789 

demonstrate that the EL model not only achieved accurate prediction but also captured 790 

biologically interpretable relationships between leaf structure, pigment composition, 791 

and BRDF parameters. 792 

 793 

Biological Relevance and Future Directions 794 

Our findings underscore that leaf optical properties represent an important yet 795 

underutilized dimension of plant phenotyping. The correlations between BRDF 796 
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parameters and phenotypic traits such as leaf thickness, pigment composition, and 797 

surface microstructure highlight the potential of optical phenotyping to reveal 798 

functional adaptations of plant leaves. By integrating BRDF-predicted parameters into 799 

3D canopy photosynthesis models, this framework enables virtual experiments for 800 

testing how structural or biochemical modifications affect canopy-scale light 801 

distribution, providing a foundation for data-driven crop ideotype design. Furthermore, 802 

when integrated with 3D point cloud data acquired from phenotyping platforms, the 803 

proposed method allows indirect scalable evaluation of canopy light distribution and 804 

photosynthetic efficiency, supporting computational phenotyping of canopy 805 

photosynthesis.  806 

As the current dataset covers four representative species across two canopy 807 

positions, this limited biological diversity constrains the generalizability of the 808 

predictive model. The present study primarily focuses on developing an integrated 809 

hardware–software framework for predicting leaf optical properties from structural and 810 

biochemical traits, rather than achieving exhaustive species coverage. The selected 811 

species were chosen to represent both monocotyledonous and dicotyledonous groups, 812 

ensuring methodological diversity rather than taxonomic completeness. It is noteworthy 813 

that the prediction model for certain optical parameter, such as surface roughness (𝜎), 814 

could be relatively conserved across species because they primarily depend on 815 

epidermal microstructure. In contrast, models for predicting parameters like the diffuse 816 

reflection coefficient (𝑘) and refractive index (𝑛) might exhibit species- and condition-817 

specific variability, driven by biochemical composition and internal tissue organization. 818 

Future studies should expand this framework across genotypes, environmental 819 

conditions, and stress treatments to construct universal predictive models for leaf 820 

optical behavior. The combination of optical phenotyping, machine learning, and 821 

radiative transfer modeling represents a promising direction for next-generation plant 822 

phenomics, where digital and computational tools jointly enable predictive 823 

understanding of plant function and light-use efficiency. 824 
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Conclusion 825 

This study establishes an integrated framework that bridges optical physics and plant 826 

phenomics by combining a custom-designed Directional Spectrum Detection 827 

Instrument (DSDI), Bidirectional Reflectance Distribution Function (BRDF) modeling, 828 

and ensemble learning (EL) model. The framework enables accurate and scalable 829 

quantification of leaf optical properties and provides the predictive relationship 830 

between BRDF parameters and leaf phenotypic traits across multiple species. The 831 

DSDI system precisely measures directional reflectance, while roughness (𝜎), diffuse 832 

reflection coefficient (𝑘), and refractive index (𝑛), capture key mechanisms governing 833 

leaf light scattering and absorption. The EL model achieved high prediction accuracy 834 

(R² = 0.83–0.99), demonstrating that leaf structural and biochemical traits can reliably 835 

predict optical behavior. Ray-tracing simulations further confirmed that BRDF 836 

parameters strongly influence canopy light distribution, highlighting their importance 837 

for parameterizing 3D canopy photosynthesis models. Overall, this work advances 838 

phenomics-oriented optical characterization by linking measurable leaf traits to 839 

canopy-scale light modeling, providing a scalable, data-driven pathway toward 840 

predictive phenotyping and digital crop design for improved photosynthetic efficiency. 841 
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