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Abstract

Light intensity and spectral distribution within plant canopies provides insights into the
effects of optimizing canopy architecture on light use efficiency. Breeding crop
varieties with a “smart” canopy, characterized by erect upper-layer leaves and flat
lower-layer leaves, can be supported with a 3D canopy model which can simulate light
distribution for a particular canopy architecture. Leaf optical properties are required
parameters for such canopy photosynthesis model to accurately predict canopy
microclimate and hence photosynthetic efficiency. In this study, we developed a
strategy to estimate the leaf optical properties based on leaf anatomical features. We
developed a Directional Spectrum Detection Instrument (DSDI) system and associated

Bidirectional Reflectance Distribution Function (BRDF) analysis software to precisely
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describe leaf light distribution. BRDF parameters were quantified with high accuracy
(R? > 0.95) for adaxial and abaxial surfaces of maize, rice, cotton, and poplar leaves
across canopy layers. Leaf phenotypic traits, surface roughness, pigments content,
specific leaf weight and thickness were also assessed. Ensemble learning (EL) model
showed excellent predictive performance for leaf optical properties based on
phenotypic traits with R? between 0.83 and 0.99. Compared to existing BRDF
measurement systems, the DSDI achieves broader angular coverage (-n/36 to 351/36)
via mechanical rotation design, and the ensemble learning model establishes the first
direct predictive relationship between BRDF parameters and leaf phenotypic traits. This
work presents a new approach to quantify leaf optical properties and offers predictive
models for leaf optical properties, which can support canopy light distribution
prediction and hence support design leaf features for higher canopy photosynthesis

efficiency.

Introduction

Canopy photosynthesis is the sum of the photosynthesis of all aboveground tissues,
which correlates with biomass accumulation and improving canopy photosynthesis is a
major breeding target for crop high light use efficiency [1]. Canopy architecture
primarily determines the absorption and distribution of solar light within a canopy [2]
and controls the use of light energy to achieve a greater canopy photosynthetic rate [3,4].
The intensity of light and spectral signals, such as red/far red ratio, regulates plant
morphology, which also influences canopy photosynthesis [5]. Improving plant
architecture for an optimal canopy architecture under higher planting density is widely
used in crop breeding and cultivation for higher crop yield [6,7]. The rice ideotype
which includes erect top leaves and medium number of tillers has been widely applied
in breeding [8]. The maize “smart” canopy with small leaf angle for top leaves and large
leaf angle for bottom leaves is suitable for higher planting density, which is a major
contributor to maize yield in the past decades [9]. Similarly in soybean, plants with

compact structures and narrower leaves are adapted for high density planting for higher
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yield [10,11]. Plant architectural traits, including plant height and leaf angles, are also
extensively optimized for other crops, such as wheat and cotton [12,13]. Though with
these successes, designing and optimizing canopy architecture still represents a major
target for current crop breeding. Studying genetic mechanisms underlying various plant
architectural features is also a major research area in current plant biology research
community.

By constructing a 3D canopy photosynthesis model, optimal plant architecture can
be studied [14,15]. 3D canopy models can be built based on either mathematical models
parameterized with plant structural parameters [16], data directly obtained from 3D
plant phenomics platform, such as multi-view stereo imaging [17,18] and lidar [19,20].
Accurately characterization of light distribution within a canopy is critical for designing
ideal canopy architecture for higher canopy photosynthesis efficiency [21,22]. Ray
tracing algorithm has been used to effectively simulate the absorbed light, transmitted
light, and reflected light after light ray reaches the leaf surface [23,24]. The spatial
distribution pattern of the transmitted and reflected light, which is determined by leaf
optical properties, is essential for the accurate prediction of light environment inside a
canopy with a ray tracing algorithm.

Leaves mainly absorb visible light between wavelengths 400-700 nm. The
absorption coefficient is usually higher than 0.9 for blue photons and higher than 0.7
for green photon. The pigment content has a major influence on the absorption
coefficient. Leaves absorb less infrared light with wavelength 700-1000 nm [25,26].
The spatial distribution patterns of reflected infrared light is more uniform than those
for visible light [27]. Leaf surface roughness and pigment content significantly
influence the distribution of reflected light [28,29]. Leaf surface roughness varies
among plant species, e.g., the roughness of rice leaf is high while the roughness of
cotton leaf is low. The light incident angle also affects the distribution of reflected light
[30]; leaf angle similarly influences light distribution in canopy. The adaxial and abaxial
surfaces have different optical properties due to the cellular anatomy of leaf section and

the chlorophylls distributions inside a leaf, which differ dramatically between flat and
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vertical leaves [31].

Although recent advances in 3D canopy modeling and smart breeding have
highlighted the critical role of leaf optical properties in regulating canopy
photosynthesis, practical evaluation of these parameters remains challenging. Existing
canopy photosynthesis models often incorporate radiative transfer but typically assume
uniform optical properties among leaves [32], overlooking the variability caused by
environmental conditions and developmental stages, which reduces the predictive
power of canopy photosynthesis models in both mechanistic studies and breeding
applications. Optical instruments can directly measure leaf reflectance and
transmittance [33], yet these measurements are slow and impractical for large-scale
phenotyping. This limitation hampers the integration of leaf-level optical diversity into
large-scale phenotyping and canopy photosynthesis modeling. In contrast, predicting
optical parameters from measurable biochemical and structural traits offers a rapid
alternative for characterizing leaf optical diversity and improving the parameterization
of canopy photosynthesis models. Because anatomical structures and pigment
compositions fundamentally determine leaf scattering and absorption [34], establishing
quantitative relationships between these traits and optical parameters provides a
scalable and efficient means of estimating leaf optical behavior across species and
canopy positions.

The spatial distributions of reflected light and transmitted light, can be described
with a Bidirectional Reflectance Distribution Function (BRDF), which have specific
parameters including roughness (o (A4)), diffuse reflection coefficient (k(1)) and
refractive index (n(4)) [35]. A variety of specialized equipment have been developed
to sample the bidirectional and spectral reflectance of leaves and interpreted the spectral
and directional variations in leaf reflectance with BRDF [36,37]. Among these
parameters, o(A) is primarily affected by epidermal micromorphology and surface
irregularities [38]; k(A1) depends on mesophyll scattering related to leaf thickness and
internal spaces [39]; and n(Ad) is influenced by biochemical composition [40].

Therefore, BRDF parameters are inherently linked to leaf anatomy, pigment
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composition, and physiological traits. Predicting BRDF parameters from leaf anatomy
and physiological traits can be a potential efficient method. However, the quantitative
relationships between BRDF parameters and these leaf traits remain poorly understood,
and no predictive model currently exists for estimating BRDF parameters directly from
leaf anatomical and physiological data.

To bridge this gap, we propose a scalable, phenomics-oriented approach to quantify
leaf optical properties from measurable anatomical and biochemical traits. We
developed a Directional Spectrum Detection Instrument (DSDI) that allows efficient
measurement of leaf Bidirectional Reflectance Distribution Function (BRDF) across a
broad range of illumination and viewing angles. The BRDF model was parameterized
using roughness (o(4)), diffuse reflection coefficient (k(4)), and refractive index
(n(4)), which link physical surface scattering and internal absorption processes to
measurable leaf traits. Moreover, we established an ensemble learning (EL) framework
to predict BRDF parameters based on leaf phenotypic traits such as thickness, specific
leaf weight, pigment content, and surface roughness. This integration of optical
measurement, modeling, and data-driven prediction establishes a new pathway toward
computational phenotyping of optical traits, facilitating the parameterization of 3D
canopy models for photosynthesis simulation.

Table 1. Description of symbols used in the paper.

Symbol Quantity Unit (symbol)

L [llumination direction vector None

|4 Viewing direction vector None

N Normal to the sample vector None

H Diagonal vector of L and V None

A Wavelength Nanometer (nm)
(7] Zenith angle Degree (°)

@ Azimuth angle Degree (°)

a Angle between N and H Degree (°)

0, Half of the phase angle between L and Degree (°)




%4

f brdf Bidirectional reflectance Unit per steradian (s~ 1)
f samp Bidirectional reflectance of sample Unit per steradian (s7~1)
[ref Bidirectional reflectance of reference Unit per steradian (s7~1)
[ spec Reflectance of specular component Unit per steradian (s7~1)
faifr Reflectance of diffuse component Unit per steradian (sr~1)
dA Unit area Square meter (m?)
ao Unit solid angle Steradian (s1)
¢ Radiant flux Watt (W)
Watt per square meter per steradian
L, Radiance
W -m™2.sr7h)
E Irradiance Watt per square meter (W - m™2)
a(d) Roughness None
k() Diffuse reflection coefficient None
n(4) Refractive index None
Chl.a Content of leaf chlorophyll a (mg - dm™?)
Chl. b Content of leaf chlorophyll b (mg - dm™2)
Total chlorophyll content (sum of Chl.a
Chla+b (mg - dm™)
and Chl. a)
Car. Leaf carotenoid content (mg - dm™?2)
T Leaf thickness (mm)
SLW Specific leaf weight (g -m™?)
p Leaf roughness measured by section None

132 subscripts A, i and v represent the wavelength, illumination and viewing directions.

133  Materials and Methods

134  Experimental Design
135 This study investigated the relationships between leaf phenotypic traits and
136  Bidirectional Reflectance Distribution Function (BRDF) parameters for leaves from

137  different plant species and from different canopy layers with a goal of developing a
6
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predictive framework for leaf optical properties. As shown in Fig. 1, four plant species
including maize (Zea mays L.), rice (Oryza sativa L.), cotton (Gossypium hirsutum L.)
and poplar (Populus alba L.) were used in this study. The adaxial and abaxial surfaces
of these leaves from both upper and lower layer of canopies were measured.
Reflectance light distribution was measured with a custom-built Directional Spectrum
Detection Instrument (DSDI), calibrated using a diffuse whiteboard standard (WS-1,
PTFE-based Lambertian material; Ocean Insight Inc., USA) with reflectivity greater
than 98% across 250-1500 nm. Leaf optical property related traits, including
chlorophyll a(Chl. a), chlorophyll b (Chl.b), carotenoid content (Car.), specific leaf
weight (SLW), and thickness (T), were quantified with established protocols. Leaf
surface roughness was determined using a custom developed image processing
software, Roughness Calculator (RC), based on the leaf section microscopy images.
To analyze the effects of species and canopy layer on leaf phenotypic traits, two-
way ANOVA was conducted using R software (version 4.5.1; R Core Team, 2023). The
analysis was implemented with the car package for Type III sum-of-squares ANOVA
[41], and post-hoc multiple comparisons were performed using the emmeans [42] and
rstatix packages [43]. Independent ¢-test for group comparison was conducted in Excel
(Microsoft Corporation, Redmond, WA, USA, version 365). BRDF parameter fitting
was performed in MATLAB (MathWorks Inc., Natick, MA, USA, version 2024b),
ensuring a high precision in parameter estimation. Furthermore, an ensemble learning
model was developed in Python (version 3.8; Python Software Foundation) with a
scikit-learn library [44]. Model performance was assessed through cross-validation and
evaluated using metrics including coefficient of determination (R?) and mean square

error (MSE) to validate predictive accuracy.
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Figure 1. Schematic of the experimental design and the development of the predictive framework for
optical properties. The upper- and lower-layer leaves from four plant species (maize, rice, cotton, and
poplar), categorized into monocots and dicots, were used (A). Light was absorbed by a leaf and reflected
and transmitted from the leaf. The reflect light includes specular and diffuse portion, and this reflect light
distribution can be modeled with BRDF (B). Leaf section microscopy images were analyzed to obtain
surface roughness data (G), which, along with other phenotypic traits (H), were fed into a predictive
model. The DSDI platform was developed for measuring leaf reflect light distribution (C), calibrated for
data accuracy with white board standard (D). Data of anatomical and physiological traits and the reflect
light distribution data were used to develop ensemble learning (EL) model, including Support Vector
Regression (SVR), Random Forest Regression (RFR), and Gradient Boosting Regression Tree (GBRT),
for accurate prediction of BRDF parameters, roughness (o (1)), diffuse reflection coefficient (k(A)) and
refractive index (n(A)). This study develops the BRDF parameter acquisition tools and its prediction
model based on the data of leaf anatomical and physiological traits, which supports canopy light-use

efficiency modeling.
Plant Materials
The experiment was conducted in 2021 at the Institute of Plant Physiology and Ecology,
Chinese Academy of Sciences (CAS), Shanghai, China. Four plant species were used
in this study including maize, rice, cotton and poplar. All plants were grown in a
greenhouse with controlled environment, day/night temperatures of 25/18°C and a

relative humidity of 60-70%. At the time of measurement, maize plants were
8
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approximately 2.0 m tall at the silking stage, rice plants at the heading stage were about
0.9 m tall, cotton plants at the boll-forming stage were about 1.5 m tall, and poplar
plants were about 2.0 m tall at the vigorous growth stage. To capture the variability in
optical properties across canopy layers, leaves were sampled from both upper and lower
canopy positions, defined as the upper and lower halves of the plant height, respectively.
For each species, at least 3 plants were used and at least 6 leaves from each plant were
used for the measurements, with fully expanded leaves sampled from both upper and
lower layers in canopy. For each leaf, both adaxial and abaxial surfaces were measured
separately.

Ray tracing simulations for evaluation of canopy scatter light distribution

To quantify the effect of BRDF parameters on the spatial distribution of scattered light
within plant canopies, ray tracing simulations were performed using a 3D rice canopy
model (cultivar 9311 at the heading stage). The simulations were conducted with an
optimized version based on the original ray tracing software (fastTracer, published by
Song et al, 2013) [45]. The optimized version of fastTracer is available at

https://github.com/PlantSystemsBiology/fastTracerPublic), =~ which was  further

modified for this study to incorporate variable BRDF parameters. The 3D canopy model
consisted of triangular leaf facets reconstructed from morphological measurements,
representing the realistic spatial architecture of rice plants. Each photon was tracked
through interactions with leaf surfaces, including reflection, transmit, and absorption,
which were governed by the Cook—Torrance BRDF model.

To evaluate the individual and combined effects of the BRDF parameters,
simulations were conducted under different combinations of leaf roughness (o), diffuse
reflection coefficient (k), and refractive index (n). The tested parameter sets included
(o, k, n)=(0.3,0.01, 1.0), (0.3, 0.35, 1.0), (1.0, 0.01, 1.0), (0.3, 0.01, 2.2), (1, 0.35,
2.2) and (0.3, 0.35, 2.2). For each configuration, photons were emitted from the light
source and traced until absorption or exit from the canopy domain. The resulting
scattered photosynthetic photon flux density (PPFD) values were recorded at different

canopy heights. The canopy space was divided into multiple horizontal layers of equal
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thickness, and the averaged PPFD were computed for each layer.

Development and evaluation of the DSDI system

The custom-built Directional Spectrum Detection Instrument (DSDI) is used to capture
the angular spectrum from leaf surfaces (Fig. 1C). The DSDI setup incorporates an
HPX-2000 high-power xenon light source (Detailed in Table S1) and an HR2000 high-
resolution fiber optic spectrometer (Detailed in Table S2) (Ocean Insight Inc., USA).
The distribution of reflectance on a leaf surface is typically characterized by the angular
distribution of zenith (@), and azimuth (@) angles in spherical coordinates,
visualized as the reflection hemisphere [46]. Figure 2A illustrates the geometric
relationship between incident and reflection angles, with the upper hemisphere
representing the reflecting hemisphere. The measurement platform in DSDI has three
axes (Fig. 2B), first, the leaf holder can be rotated with the Z-axis determining the
illumination angle (6;, ¢;); second, the detection ring can be rotated with the Y-axis
and third, the collimation lens can be slide on the detection ring. The detection ring and
the collimation lens together determines the detecting angle (8,,¢,). When leaf
sample was placed into a leaf holder, the collimation lens then rotated around the leaf
holder on a circular track, capturing measurements from multiple angles. For detailed
information, see supplementary material (Fig. S1-S3).

To validate the accuracy of DSDI in the measurement of reflectance from different
angles, we conducted tests using a Lambertian whiteboard with its reflectance
following the Lambert cosine law, i.e., the reflect light intensity is linearly correlated
with the cosine of the detection angle [47,48]. Reflect light intensity at different
detection angles was measured and recorded for the whiteboard at incidence angles of
0, m/6 and m/4, respectively. (Fig. 2C-E). A linear relationship was derived between
reflectance intensity and cosine of the detection angle (R? > 0.99) (Fig. 2F-H),

confirming that DSDI provides reliable spatial light distribution measurements.
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Figure 2. The design and verification of DSDI. A: the geometric design of the optical platform in DSDI,
including rotating the leaf holder determining the illumination angle (8;, ¢;), rotating detection ring and
sliding collimation lens determining the viewing or detecting angle (6,,¢,). B: the measurement
diagram of DSDI. C-E: data of reflectance intensity measured with a standard whiteboard at incidence
angles of 0, m/6 and m/4, and plotted in a polar coordinate system. Yellow arrows indicate the incident
light direction. F-H: the linear relationship between reflectance intensity and cos(6) at the three
corresponding incidence angles (0, m/6 and m/4). 6 represents the angle between the viewing

direction and the normal.

Measurement of spatial distribution of reflection spectrum of leaves

The directional distribution of transmitted light through leaves is physically similar to
that of diffuse reflectance [33], and it can be approximated by a Lambertian function
[49]. Therefore, this study focuses on the reflection distribution without separately
analyzing the transmission component. The DSDI system was used to measure the
reflection distribution of leaf as the following steps. Firstly, a leaf sample with area of
1cm X 2 cm was attached on the leaf holder. The leaf surface should be flat, and the
position of the primary vein was not used. Secondly, the sample holder was rotated to
set the incident angle. The light source was turned on, and a light spot can be observed
on the leaf. The illuminated area is round for incident angle 0 and elliptical for other
incident angles. Thirdly, the detection ring was rotated to be horizontal for measuring

the reflection and then the collimation lens was slide along the detection ring to measure
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the reflect light spectrum at different reflection angles. Finally, the reflected light
spectrum was measured and recorded by the spectrometer and the PC.

We collected reflectance data across a broad spectrum (400 — 992 nm) and selected
five representative wavelengths (468.36, 556.26, 673.46, 819.88, and 877.97nm) for
further analysis as shown in Table 2. These wavelengths include the primary absorption
(468.36 and 673.46 nm) for pigments such as Chl.a, Chl.b, and Car; the maximum
reflectance peak in the green light region (556.26 nm); the near-infrared (NIR) region
(819.88 and 877.97 nm).

Table 2. The selected wavelengths in the VIS-NIR spectrum.

Waveband Blue Green Red Near-infrared

Range(nm) 440-485  500-565  625-740 800-1300

Wavelength(nm)  468.36 556.26 673.46 819.88, 877.97

The definition of BRDF and its calculation based on the measured data with DSDI
system

The Bidirectional Reflectance Distribution Function (BRDF) is used to describe the
spatial reflecting characteristics of light on rough surfaces, such as the leaf surface [50].
The general bidirectional reflectance (fp,qr) can be defined as the ratio of radiance to
irradiance, quantifying the contribution of the incident spectral irradiance from the
direction (6;, ;) to the reflected spectral radiance in the direction (6, ¢,) (Eq. 1).
Radiance is the radiant flux (power) per unit projected area per unit solid angle (unit:

W-sr'm2) and irradiance is the radiant flux incident on a surface per unit surface area.

_ LT(A; 91'; Di, Q‘U' (p‘l]')
Jorar = E(4,0;,¢;) W

The fprar represents the bidirectional reflectance, L denotes radiance, E refers to

irradiance, A is the wavelength, 6; is incident zenith angle, and ¢; is the incident
azimuth angle, 6, is reflex zenith angle, and ¢, is the reflex azimuth angle. The
symbols and units used in this formula are summarized in Table 1.

According to the definitions, the radiance (L,) can be derived with the measured
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reflected radiant flux (¢,) at a view angle (8,,) for a certain surface area (dA) and a

certain solid angle (dQ) as Eq. 2.

[
" dAcos(6,)dQ

The irradiance (E) can be derived with the incident radiant flux (¢;) on the surface

(2)

area (dA) with Eq. 3.

P
=71 (3)

Substituting Eq. 2 and Eq. 3 into the Eq. 1, we obtain Eq. 4 that describes the

E

bidirectional reflectance for light at wavelength (1) with incident direction (6;, ;)

and reflect direction (6, ¢,):

L(A' ei' Py Hvr (pv) — ¢v
E(A, 6, 9;) ¢;cos(6,) dQ

Assuming that the reference whiteboard behaves as an ideal Lambertian surface

fbrdf()l: ei' (pilev' (pv) = (4’)

with a hemispherical reflectance of 100%, the bidirectional reflectance of the reference

surfaceis 1/m [51]:

f — ¢v,ref :1
el T picos(6,)d0 @

Thus, the bidirectional spectral reflectance of the leaf sample can be calculated

(5)

relative to the whiteboard as following equations:

¢)v samp ¢v samp
= 4 = 4 6
fsamp ¢i COS(HV) aQ  m- ¢v,ref ( )

Using the DSDI system, the measurement was performed for leaves and the
reference whiteboard at several incident angles. For each incident angle (i), the
Dvsamp and @y, ror at various reflection angles were measured. Then the bidirectional

reflectance for leaf sample (fsqmp) could be calculated with Eq. 6.

In the practical operation of the DSDI system, all angular parameters are derived
from the instrument’s mechanical scales. Due to minor manufacturing and assembly
deviations, the initial position of the leaf holder does not correspond to a true 0°

orientation but instead to 95°, which represents the perpendicular illumination reference
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of the DSDI. Therefore, the leaf inclination angle 6,,,r was calculated with the scale

of leaf holder (8;¢qfnotder ) as:

Biear = 95° — Bicarnotder (7)
where 95° corresponds to the perpendicular illumination reference of the DSDI system.
To facilitate the calculation of reflection geometry, a three-dimensional Cartesian
coordinate system was established (Fig. 2B). The illumination direction was defined as
the positive direction of the Y-axis, while the Z-axis points vertically downward. The
X-axis was defined according to the right-handed Cartesian coordinate system,
perpendicular to the YZ-plane. Since the light source remained fixed, the illumination
direction vector (L) was defined as:
L=(0,-1,0) (8)

Based on the leaf inclination angle, the leaf normal vector (N) can be expressed as:

N = (sin(@leaf) ,— cos(@leaf) ,0) 9)

During reflection measurements, the collimation lens slides along the detection

ring to acquire reflectance at different angles. The ring’s scale reading corresponds to

the viewing zenith angle (6,,), while the rotation of the ring defines the viewing azimuth
angle (¢,). Accordingly, the viewing direction vector (V) can be calculated as:

V = (sin(8,) cos(¢,), — sin(8,), sin(8,) sin(¢p,,)) (10)

Based on the illumination direction vector (L) and the viewing direction vector (V),

the half-vector (H) representing the bisector of illumination and viewing directions is
calculated as:

L+V

=\/(L+V,L+V) U

Thus, all directional vectors and angular parameters required for the BRDF model,
including the illumination, viewing, normal and half vectors, were determined
geometrically within this coordinate framework.

The Cook-Torrance model for BRDF

In this study, we employ the classic Cook-Torrance model to calculate BRDF. The

14



339  model was developed by Robert Cook and Kenneth Torrance in 1981 for surface with
340  varying roughness based on geometric optics [52]. The reflectance of a rough surface
341  lies between perfect diffuse and perfect specular reflectance, and can be expressed as
342 the sum of the diffuse and specular components:

343 forar = fspec T faifs (12)
344 For an ideal Lambertian surface, the bidirectional reflectance is 1/m [51]. The
345  diffuse component of the bidirectional reflectance for a leaf surface can be expressed

346  as Eq. 12 and the k(A4) is the diffuse reflection coefficient.

k(1)
347 fdiff = T (13)
348 The specular reflection component is more complex than the diffuse reflection. The

349  leaf surface can be approximated as a collection of micro-facets with irregular
350  orientations [53], as shown in Fig. 1B. Specular reflection in this model is described as
351  light reflecting from micro-facets, with the reflection occurring between the
352  illumination and the viewing.

353 The leaf cuticle, which covers the epidermal cells, is considered a low-absorption
354  medium compared to the leaf itself [54], allowing us to neglect its absorption. The light
355 reflected from a single micro-facet can be defined by the Fresnel factor F(n,8), which
356  describes the proportion of non-polarized incident light reflected as specular reflection

357 [55]:

1 ("2(/1) +cos?(8,) — 1 — COS(‘%))2 [1 + <COS(9h) (n*(4) + cos*(6) = 1 + cos(0)) = 1)2 (14)

358 Fn0n) = 2 n?(A) + cos?(0;) — 1 + cos(6y) cos(8y) (n?(A) + cos?(6,) —1 —cos(6y)) + 1

359 The distribution of the micro-facet slopes is defined by the Beckmann distribution
360 D(a, o), which can be expressed as [56]:

361 (15)

362 During illumination, micro-facets may shield and mask each other, causing light
363  attenuation [37]. The geometric attenuation factor G(L,N,V, H) describes this effect,

364  capturing the reduction of light due to multiple reflections between micro-facets [57]:
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(16)

G(L,N,V,H) = min (1'2("' N)(N,H) 2(L,N)(N, H))

vV,H) ~ (V,H)
Here, H is the angular bisector vector and can be calculated with Eq. 11 by
assuming that H is the normal vector of the micro-facet [36].

In summary, the Cook-Torrance BRDF on the leaf surface can be expressed as:

_ F(n(2),8,) - D(a,0(1)) - G(L,N,V,H) k(d)
forar = 2m2(L,N)(N, V) T a7)

BRDF Parameters Fitting Algorithms

According to the Cook-Torrance model of BRDF, three critical parameters (roughness
(a(4)), diffuse reflection coefficient (k(A)), and refractive index (n(1))) of the BRDF
determines leaf optical properties. These parameters influence reflectance distribution,
which is vital for understanding light behavior on a leaf surfaces. The optimization of
BRDF parameters was constrained by setting fixed upper and lower bounds for each
parameter during the fitting process [36]. These bounds ensured that the parameter
values remained within physically meaningful and biologically relevant ranges, thereby
improving the robustness and accuracy of the optimization. The roughness, o(4),
describes the surface texture and corresponds to the root mean square (RMS) of the
slope of the micro-facets on the surface [49]. It ranges from 0 (perfectly smooth) to 1
(highly rough). A higher (1) value indicates more irregular and scattered reflected
light, while a lower value results in more directional and concentrated reflections [58].
The diffuse reflection coefficient, k(1), represents the proportion of diffuse light
reflected from the surface, with values between 0 and 1. The k(A) value of 0 indicates
no diffuse reflection, while a value of 1 suggests complete diffuse reflectance. The
refractive index, n(4), quantifies the extent to which light attenuates when passing
through the leaf medium and typically ranges from 1 to 5 for leaves [59].

To accurately characterize the BRDF parameters of leaf surfaces, we employed two
fitting methods: Least Squares curve fitting and Adaptive Grid Search. The least squares
method is a traditional regression technique that estimates parameter values by
minimizing the sum of squared residuals between observed and fitted values. Using

MATLAB?’s least squares fitting function, we estimated the BRDF parameters. This
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method is computationally efficient and suitable for samples with relatively simple
surface structures. An adaptive grid search algorithm was developed in this study, and
this algorithm utilized a 2-layered grid (step sizes of 1 X 1072 and 1x 107*
respectively) structure to incrementally optimize each parameter, providing a more
precise approximation of true values. By iteratively narrowing the search range and
increasing resolution, this method gradually converges on the optimal solution. The
source code of Python for adaptive grid search algorithm was available at

https://eithub.com/PlantSystemsBiology/brdf.

The solver was applied with initial values (py, ko, ng) = (0.5, 0.5, 3) and
parameter bounds p € [0,1], k€ [0,1], n € [1,5] (implemented as [0.01, 0.01,
1.1]-[0.99, 0.99, 5] for numerical stability). Model performance was evaluated by
coefficient of determination (R?), root mean square error (RMSE) and residual
analysis, providing reliable estimations of BRDF parameters for each wavelength and
leaf sample.

Quantification of Leaf Roughness Using RC

Leaf cross-sections were prepared by manually cutting 50-80 um segments of fresh
leaves with a sharp blade [60], and images of the leaf sections were obtained using an
optical microscope (Leica DM2500, Leica Microsystems, Wetzlar, Germany). A
custom software tool, Roughness Calculator (RC), was developed to quantify leaf

roughness (software available at https://github.com/PlantSystemsBiology/brdf). RC

software calculated leaf roughness with the image of leaf cross-section. A region of
interest (ROI) of leaf surface was selected from the leaf cross-section image (shown by
the blue box) and the exact inner edge length ;. (blue line) based on individual
pixel counts was calculated. Then, the smoothed outer edge length [,,;., (red line)
was determined using a Gaussian filter (shown in Fig. 3). The ratio p, calculated with
Eq. 18, provides a reliable metric for leaf surface roughness. To mitigate the effects of
leaf tips and main veins, ROI can be manually selected instead of the whole section
within the software. The ROI size was randomized, and five replicates were analyzed
for each section image, to minimize user bias. For detailed methodology, see
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supplementary material (Fig. S4-S8).
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Figure 3. Quantification of leaf surface roughness using the Roughness Calculator (RC) software. The
software calculated two edge lengths of the leaf section: the precise inner edge length (lj;,6r», blue line)
based on individual pixel counts and the smoothed outer edge length (I, ter, red line) based on a Gaussian
smoothing filter. Their ratio (p=/iuner/lourer) represented the roughness metric (data were shown at the right
side of the software). Manual selection of the region of interest (ROI) (light blue box) allowed analysis

for a specific part of leaf surface.
Measurement of Physiological and Biochemical Traits

Leaf thickness (T) was measured using a micrometer. Small leaf discs were punched
from the leaves avoiding the primary veins for determining the content of chlorophyll
a (Chl.a), chlorophyll b (Chl.b) and carotenoid (Car.), following an established
protocol [61]. Absorbance (A) values were measured at wavelengths of 663 nm, 645
nm and 470 nm in a spectrophotometer. The calculation formulas for these pigments

were as follows:

Chla = 12'72A663 - 2'59A645 (19)

ChLb = 22.8844,c — 4.67Ages (20)
10004, — 3.27C, —104C,

Car.= 470 22(;hl.a chl.b (21)

For measuring specific leaf weight (SLW), leaf samples with an area of ~6 cm?

were collected. The areas of the leaf samples were first precisely measured and then the
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leaf samples were dried at 105°C for 10 minutes and 80°C until a constant weight. The
specific leaf weight (SLW) was calculated by dividing the dry weight of the leaf sample

by the area:

dry weight
SLW = ary weignt (22)
area

Development of an Ensemble Learning Model for Predicting Leaf Optical
Properties Based on Phenotypic Traits

In this study, we developed an ensemble learning (EL) model to predict the BRDF
parameters of leaves with their phenotypic traits utilizing data from 270 data entries.
The EL model integrates Support Vector Regression (SVR), Random Forest Regression
(RFR), and Gradient Boosting Regression Tree (GBRT) as base learners, with a
stacking strategy using Linear Regression (LR) as the meta-learner (as shown in Fig.
1I).

Nine phenotypic traits were used as input variables, including leaf thickness (T),
specific leaf weight (SLW), chlorophyll a (Chl.a), chlorophyll b (Chl.b), and
carotenoid content ( Car.) total chlorophyll ( Chl.a + b ), chlorophyll a/b ratio
((Chl.a)/(ChIL. b)), leaf surface roughness (p), and spectral wavelength (4). These
traits collectively describe the biochemical, physiological, and structural characteristics
that determine leaf optical behavior and thus the BRDF parameters.

This EL framework was designed to improve predictive accuracy and
generalization by leveraging the complementary strengths of multiple regression
algorithms. The methodology involved several key steps:

(1) Data Preprocessing and Standardization
The features were standardized using z-score normalization. For each feature, the mean
and standard deviation were calculated, then each sample’s feature value was
transformed by subtracting the mean and dividing by the standard deviation. This
process resulted in a distribution with zero mean and unit variance for all features,
eliminating differences in units and scales among features for enhancing model

convergence and predictive performance.
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(2) Feature Selection
We applied Recursive Feature Elimination (RFE) for feature selection. The RFE
iteratively built models and eliminated the least significant features based on feature
importance (e.g., model coefficients or feature importance scores). Using this method,
five features were selected from the initial set of nine phenotypic traits according to the
impact on the BRDF parameters. These five features served as independent variables
for model training. The three BRDF parameters were set as target variables, and

separate models were developed for each BRDF parameter.

(3) Model Development and Hyperparameter Optimization
The dataset was split into training and testing sets at an 8:2 ratio to ensure robust model
training and evaluation. Using the five selected features, we developed three base
models: Support Vector Regression (SVR), Random Forest Regression (RFR), and
Gradient Boosting Regression (GBRT). For each base model, hyperparameter
optimization was performed using 10-fold cross-validation combined with a grid search.
By exhaustively testing predefined parameter combinations, a set of parameters that
minimized the cross-validation mean squared error (MSE) for each model were

identified.

(4) Ensemble Model Construction
We then constructed an ensemble learning (EL) model using a stacking approach. The
optimized SVR, RFR, and GBRT models served as primary learners, and Linear
Regression (LR) was employed as the secondary learner (meta-learner). This stacking
approach allowed the EL model to combine predictions from the primary learners,
enhancing the model’s overall generalization capability. The performance of the EL
model was further evaluated using 10-fold cross-validation.

(5) Model Performance Evaluation
Finally, we evaluated the predictive performance of all models on the test set to verify
their generalization abilities and practical applicability. We used Mean Squared Error
(MSE) and the coefficient of determination (R?) as evaluation metrics to compare the

base models and the EL model. This allowed us to assess and compare the accuracy and
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reliability of each model in predicting the BRDF parameters based on leaf phenotypic

traits.

Results

Ray-tracing Analysis of BRDF Effects on Canopy Scattering

To quantify the impact of BRDF parameters on canopy light environments, we
incorporated the BRDF parameters in the ray-tracing software previously developed by
Song et al [60] and performed ray tracing simulations using a 3D rice canopy model.
The canopy light simulation focused on the distribution of leaf-scattered photosynthetic
photon flux density (PPFD), as BRDF parameters mainly regulate the scattering

behavior of leaf surfaces rather than atmospheric direct or diffuse light.
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Figure 4. The impact of diffuse reflection coefficient (k) on light distribution within a rice canopy. A:
Scatter plot of scattered photosynthetic photon flux density (PPFD) versus canopy height. B: Vertical
distribution of scattered PPFD across different canopy layers, presented as box plots. C: Mean scattered
PPFD at each canopy layer. D-E: Frequency distribution of scattered PPFD under (D) k=0.01 and (E)
k=0.35. F: Comparative histogram of scattered PPFD distributions for both scattering coefficients.
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When varying the diffuse reflection coefficient (k) between 0.01 and 0.35 while
fixing leaf roughness (6 = 0.3) and refractive index (n = 1), marked differences were
observed in the spatial patterns of scattered PPFD (Fig. 4A—C). Canopy upper layers
exhibited substantially higher scattered PPFD under k = 0.35 compared with k =
0.01. The proportion of leaf facets exposed to medium light intensity (40-80
pumol m™2 s7) increased under low k, whereas the fraction under high light intensity
(80150 pmolm™2s™') declined. These findings indicate that a lower diffuse
reflection coefficient leads to a more homogeneous scattered light distribution within

the canopy.

Further simulations altering o (0.3 and 1.0) and n (1.0 and 2.2), as well as
combined parameter sets (e.g., k = 0.01 with n = 1.0, k = 0.35 with n = 2.2),
showed that all three parameters substantially influence canopy-level radiation patterns
(Fig. S9-S13). These results emphasize that accurate BRDF parameterization is

essential for simulating canopy radiative transfer and photosynthesis.

Variations of leaf anatomical and physiological traits at upper and lower canopy
layers in four species

To study the relationship between leaf optical properties and leaf anatomical and
physiological traits, we chose four species including two monocotyledonous (maize,
rice) and two dicotyledonous (cotton, poplar). The leaves at both upper and lower layers
of these plants’ canopies were used for the measurement because the leaves acclimate
to heterogeneous light environment in canopy. The phenotypic traits, including leaf
thickness (T), specific leaf weight (SLW), chlorophyll a (Chl. a), chlorophyll b (Chl. b),
and carotenoid content (Car.) were quantified. Two-way ANOVA revealed that both
species and canopy layer had significant effects (P <0.001) on T and SLW (Table S3).
However, Chl.a, Chl.b, and Car. contents were not significantly affected by either
species or layer. Significant species and layer interactions were detected for Chl.a,
Chl.b, and Car., indicating that pigment-related traits exhibited species-dependent
responses to canopy position.

The leaf thickness was not significantly different between upper and lower canopy
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layers across species (Fig. SA). SLW was significantly higher in lower-layer poplar
leaves compared to upper-layer leaves (P < 0.05)(Fig. 5B), possibly reflecting
structural adaptations to lower light levels in the shaded canopy [62]. In contrast, SLW
differences between canopy layers were less pronounced in maize, rice, and cotton. A
positive correlation between SLW and T across species were observed, with poplar
exhibiting the strongest correlation (R? > 0.79) and rice the weakest (R? > 0.45)(Fig.
SH). The relationship between SLW and T was dramatically different among these four
species, shown by the shaded areas representing the 95% confidence intervals,
highlighting interspecies variation in leaf structure and density. We also calculated total
chlorophyll (Chl. a + b) and the ratio of chlorophyll a to chlorophyll b (Chl.a/Chl. b).
In maize, the chlorophyll content (Chl.a and Chl. b) was significantly higher in lower-
layer leaves (Fig. SC-D, F), but rice exhibited the opposite pattern. As shown in Fig.
5G, the chlorophyll a/b ratio was not different between canopy layers. In maize, the
Car. in lower-layer leaves nearly doubled that in upper-layer leaves (Fig. SE). We also
quantified the leaf surface roughness (p) based on the leaf section images using the
developed Roughness Calculator (RC) software (Fig. 5I). The results indicate that the
position of the leaf within the canopy has no significant effect on the p of the leaf,
with minimal differences between the adaxial (Fig. 5J) and abaxial (Fig. SK) surfaces
and consistent numerical trends. Rice leaves are the roughest, while poplar leaves are

the smoothest.
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Figure 5. Comparison of anatomical and physiological traits between upper- and lower-layer
canopy leaves across four plant species. A-G: leaf thickness, specific leaf weight, chlorophyll a,
chlorophyll b, carotenoid, total chlorophyll and chlorophyll a/b ratio in upper (red) and lower (blue)
canopy leaves of maize, rice, cotton and poplar. Data were presented as mean + SE (Standard Error).
Significant differences between canopy layers were determined using Two-way ANOVA with Bonferroni
multiple post-hoc tests, marked with * for P < 0,05. H: linear regression between specific leaf weight
and thickness across four species, with 95% confidence intervals. The regression lines and coefficient of
determination (R?) values were provided for each species. I: leaf section microscopy image examples. J-

K: leaf surface roughness for the adaxial side (J) and abaxial side (K).

Spatial distribution of reflectance across species and canopy layers

Using the DSDI system developed in this study, we performed the measurement of
BRDF for the samples used for quantifying those anatomical and physiological traits
above. Both adaxial and abaxial surfaces of the leaves were measured. Then, the Cook
Torrance BRDF model was used to fit the data for deriving the BRDF parameters (Fig.
6). The reflectance distribution on leaf surfaces generally consists of a narrow peak (e.g.,
the blue ellipse in Fig. 1B) in the specular reflection direction, superimposed on a more
uniform diffuse background (e.g., the red semicircle in Fig. 1B) in the diffuse reflection
directions [37]. The maximum specular peak, indicative of nearly pure specular

1 within a small solid angle for poplar leaves

reflection, reaches approximately 0.6 sr~
at light incident angle 11m/36 (Fig. 6). Notably, rice and cotton exhibit relatively
uniform reflectance distributions across both adaxial and abaxial surfaces, with lower
reflectance values compared to maize and poplar. This pattern may arise from specific
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structural or biochemical properties in rice and cotton leaves that reduce directional
reflection.

Interestingly, the peak of the BRDF appears at an angle slightly larger than the ideal
specular reflection angle, an effect influenced by the (1) [55]. Although the diffuse
reflection component appears minor, it dominates when integrated over the entire
hemisphere [37]. As the zenith illumination angle increases, all samples become more
specular, with narrower and more pronounced BRDF peaks. Despite these common
trends, the four species exhibit distinct BRDF profiles, allowing clear differentiation
based on reflectance distribution patterns.

The polar plots in Fig. 6 visualize these variations in reflectance distribution across

species. Maize and poplar display pronounced specular reflections, particularly on the

abaxial surfaces (Fig. 6A-B, G-H), while the BRDF peaks of rice and cotton (= 0.08

sr') were significantly lower than those of maize (0.15 sr™') and poplar (0.6 sr™') (P <
0.01). (Fig. 6C-F). These findings underscore the importance of species-specific leaf
surface adaptations in controlling light distribution within the canopy, with potential
implications for enhancing photosynthetic efficiency. Such adaptations provide critical
insights for refining light interaction models and highlight potential targets in breeding
programs aiming at improving resource efficiency and productivity in diverse light

environments.
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Figure 6. Reflectance distribution for the adaxial and abaxial surfaces of four species in polar coordinate.
The reflectance distributions for the adaxial (A, C, E, G) and abaxial (B, D, F, H) surfaces of leaves
across four plant species: maize (A-B), rice (C-D), cotton (E-F), and poplar (G-H). For each figure panel,
data of two illuminated angles (light incident angles) were shown. For maize and poplar, 0 (left) and
11 /36 (right) were shown, and for rice and cotton, 0 (left) and m/4 (right) were shown. In the polar
coordinate, the angle represents the reflection angle, the radial represents the value of the BRDF, with
the pink asterisk representing the actual measured reflectance (frqr) by the DSDI system and the green

circle representing the fitted reflectance (f54) on the BRDF model by the least squares curve fit. Units

of reflectance are given in sr1.

Evaluation of BRDF parameter fitting

To evaluate the performance of the BRDF parameter fitting, we applied two methods
(fisq for Least Squares and f,4, for Adaptive Grid Search) to fit the BRDF, based on
the actual measured reflectance of both leaf surfaces for upper and lower layer in

canopies of the four species. The fitted reflectance values (fi5q and f,4s) were linear
correlated (R? =0.9512 and 0.9522) with the actual measured reflectance values (f},-4 )

(Fig. 7) at the measurement locations. Both methods provided high-quality fits to the
measured data (R? > 0.95), effectively capturing the reflectance distribution on leaf
surfaces. While the Adaptive Grid Search achieved slightly higher fitting accuracy due
to its two-layer grid structure, but it required longer processing times. Therefore, we

used the results from the Least Squares fitting method for further analysis.
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Figure 7. Comparison between measured and fitted BRDF values using two fitting methods, Least
Squares curve fit function (A) and the Adaptive Grid Search (B). fi, indicates BRDF values simulated
using the Least Squares fitting method, and f.,, denotes values derived from the Adaptive Grid Search
method. The black dotted line represents the 1:1 line, while the solid regression lines illustrate the
relationship between fitted bidirectional reflectance (fi,; and fues) and measured bidirectional reflectance

(fprag)- The coefficient of determination (R?) indicates the strength of correlation, with both methods
showing strong agreement with the measured data (R? > 0.95). The scatter points present the

bidirectional reflectance for various combinations of incident angles and reflection angles.
Variations of BRDF Parameters Across Species and Canopy Layers

There were significant variations for BRDF parameters across species, canopy layers
and light wavelength (Fig. 8). Rice and cotton exhibited higher (1) values than that
of maize and poplar for both two leaf surfaces and two canopy layers, indicating that
the rice and cotton had irregular surface structure compared to maize and poplar. This
higher roughness results in a relatively even reflectance distribution (Fig .6C-F). In
contrast, maize and poplar show higher specular reflectance components (Fig. 6A-B,
G-H) due to their lower a(1) values, which increase the probability of concentrated
light reflection [63]. The a(1) was the same for different wavelengths, suggesting that
this parameter was a property of leaf surface texture controlled by species-specific
structural traits [64]. In contrast, the k(A) demonstrates marked sensitivity to
wavelength, with the highest values at infrared region and relatively high at green light
and lower for blue and red light (Fig. 8C-D). This phenomenon can be explained by the
reflectance of leaf at these wavelengths. The wavelength-dependent nature of k(A)
aligns with general spectral reflectance properties, where longer wavelengths tend to
exhibit more diffuse scattering [51]. The n(4) shows limited wavelength sensitivity
across species, with relatively high values in maize and poplar (Fig. 8E-F). Notably,
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n(A) remains consistent between adaxial and abaxial surfaces, supported by the similar
structure of leaf surface at both side of a leaf.

o k n 1 468.36 nm

W 556.26 nm
W 673.46 nm
W 819.88 nm
aa M 877.97 nm

Adaxial

19hel-1addn

Abaxial

Adaxial
19Kel-1omo

Abaxial

aa aa

aaaaa

aa

aa
Maize Rice Cotton Poplar Maize Rice Cotton Poplar Maize Rice Cotton Poplar

Figure 8. Comparison of BRDF parameters across species (maize, rice, cotton, and poplar) and canopy
layers (upper and lower) for both adaxial and abaxial leaf surfaces. These parameters included roughness
o(1) (A-B), diffuse reflectance coefficient k(1) (C-D) and refractive index n(1) (E-F). Each
parameter was measured at multiple wavelengths (468.36 nm, 556.26 nm, 673.46 nm, 819.88 nm
and 877.97 nm), represented by different colors. Data were presented as mean + SE (Standard Error)
for upper-layer (A, C, E) and lower-layer (B, D, F) leaves. Mean comparisons were conducted using
Tukey’s HSD test at a significance level of 0.05. Different letters indicate significant differences among

different wavelengths.

Correlation Analysis Between Leaf Phenotypic Traits and BRDF Parameters

To further understand the relationship between leaf phenotypic traits and optical
properties, we performed a correlation analysis between relevant parameters, as
presented in Fig. 9. The analysis reveals a highly significant positive correlation
between o(A) and the leaf surface roughness p, with no significant correlation

between o(A) and wavelength. This finding suggests that o(4) primarily reflects the
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intrinsic surface characteristics of the leaf, which can be reliably modeled through a
linear relationship based on p (Fig. S8). Additionally, a(41) shows a significant
negative correlation with pigment content.

The k(1) was strong positive correlated with A, consistent with known spectral
reflectance patterns in leaves, where light scattering generally increases with longer
wavelengths (from visible light to infrared light)[65]. It should be noted that k(1) was
indeed correlated with the leaf absorbance for specific band of wavelength.

The n(4) exhibits significant negative correlations with both T and SLW. This
indicates that denser and thicker leaves, which associated with higher SLW and T, tend
to have lower refractive indices, thereby reducing light transmittance. Furthermore,
there is a noteworthy negative correlation between o(4) and n(4), suggesting that as
surface roughness increases, the refractive index decreases. This relationship implies
that the leaf surface structure may be biologically connected to its internal composition,

potentially affecting its refractive properties [66].
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Figure 9. Correlation matrix between wavelengths, leaf traits and BRDF parameters. This heatmap shows
the correlation coefficients among various parameters, including Leaf thickness (T), Specific leaf weight
(SLW), Chlorophyll a (Chl.a), Chlorophyll b (Chl.b), Carotenoid content (Car.), Total chlorophyll
(Chl.a + b), Ratio of chlorophyll a to b ((Chl.a)/(Chl. b)), leaf surface roughness (p), measurement
wavelength (4), and the BRDF parameters o(4), k(4), and n(1). The wavelength feature represents
the spectral band (400-992 nm) at which BRDF parameters were measured. The color scale represents
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the strength and direction of correlations, with red indicating positive correlations and blue indicating
negative correlations. The color intensity and size of the circle correspond to the strength of the
correlation, as shown in the color bar. Pearson’s correlation coefficient was used, and significant

correlations were marked with an asterisk (*) at the P < 0.05 level.
Predictive model for BRDF parameters with data of leaf anatomical and
physiological traits
To predict the BRDF parameters using the data of leaf anatomical and physiological
traits, several base models and the ensemble learning model were trained and evaluated.
Results show that the R? of stacking ensemble learning (EL) model was generally
higher than individual base models, including Support Vector Regression (SVR),
Random Forest Regression (RFR), and Gradient Boosting Regression Tree (GBRT), in
predicting BRDF parameters (o(1), k(4), and n(4)). The comparison of models
shows that the EL model consistently outperforms the individual models, yielding R?
value 0.83-0.99 on the test set (Fig. 10A-C). However, all models demonstrated a
relatively lower performance in predicting n(A), likely due to additional influencing
factors, such as water content, which affect light transmission properties in leaves [26].

To assess statistical significance in model performance, paired t-tests were
conducted. Fig. 10D-F reveals that the EL model had a significantly lower Mean
Squared Error (MSE') than the SVR model (P < 0.05), though differences between the
EL model and RFR or GBRT were not statistically significant. Feature importance
analysis (Fig. 10G-I) indicated that leaf surface roughness (p) and wavelength (1) were
the dominant predictors for BRDF parameters a(4), k(4), and n(4), followed by
specific leaf weight (SLW) and pigment-related traits ((Chl.a)/(Chl.b)and Chl.Db).
These results suggest that both structural and spectral features play critical roles in
determining leaf optical features. The learning curves (Fig. 10J-L) show the training
and cross-validation error for each model, with the EL. model achieving lower cross-
validation error, indicating improved generalization capability for unseen data.

These findings confirm that the stacking EL model provides robust and accurate
predictions for BRDF parameters by effectively integrating the strengths of each base

model. The enhanced predictive power of the EL model offers a reliable framework for
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modeling leaf optical properties based on leaf traits, which could be instrumental in

refining canopy light distribution models and optimizing crop canopy.
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Figure 10. Performance of ensemble learning (EL) model for predicting BRDF parameters a(4), k(4),
and n(4) based on leaf traits. A-C: the scatter plots of actual versus predicted values for (1), k(4),
and n(4), respectively, with a dotted line indicating the 1:1 relationship. D-F: the residual plots for each
parameter, illustrating the residual distribution against predicted values. G-I: Importance of leaf
phenotypic traits for predicting BRDF parameters in RFR model. J-L: present the learning curves,
showing both training error (red line) and cross-validation error (green line) for the EL model during the
training process for each parameter. Model comparisons were based on SVR (Support Vector Regressor),
RFR (Random Forest Regressor), GBRT (Gradient Boosting Regressor), and a stacking EL model. The
statistical metrics (MSE and R?) indicate the accuracy and robustness of the models, with the stacking
model showing superior performance for most parameters. Statistical significance was assessed via

paired t-tests, with a significance level of P < 0.05, denoted by an asterisk (*).

Discussion

This study introduces an integrated framework combining optical instrumentation
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(DSDI), physics-based modeling (BRDF), and data-driven analytics (EL) to quantify
and predict leaf optical properties from anatomical and biochemical traits. Unlike
traditional optical methods limited to slow reflectance or transmittance measurements,
the proposed approach transforms optical characterization into a phenotype-driven,
scalable, and computationally extensible process. The DSDI system enables precise
measurement of directional reflectance across multiple angles, and the derived BRDF
parameters (o, k, and n) capture critical variations in surface roughness, scattering,
and refractive properties that define leaf optical diversity among species and canopy
layers.

Integration of Optical Traits into Phenomics Frameworks

Three-dimensional (3D) canopy photosynthesis models can be used to identify factors
controlling canopy photosynthesis efficiency and deconvolute dominant factors
governing canopy photosynthetic performance [67—70]. The distribution of direct light
and diffuse light has been found to have a significant impact on the photosynthetic
efficiency of the canopy [71]. Plant architectural traits, such as leaf type and leaf angle,
also influences light distribution in plant canopy.

One of the major predictions of such canopy photosynthesis models is that canopy
with vertical light-green leaves in upper canopy coupled with horizontal dark-green
foliar arrangements in lower canopy can help increase efficiency [63]. Such a canopy
architecture can enhance photon flux homogeneity, simultaneously mitigating light
saturation in apical leaves while alleviating light limitations in basal leaves. In this study,
leaf anatomical and biochemical features are major determinants of optical properties
of the leaf [72,73]. Our results reveal a statistically robust correlation between the
roughness parameter (0(4)) of the BRDF model and leaf surface roughness (p) derived
from leaf cross-sectional microscopy quantifications (Fig. 9). The established linear
regression model (Fig. S8) enables practical estimation of o(A) through rapid p
characterization using microscopy-based measurements. This positive correlation
suggests that leaf surface irregularities directly influence BRDF roughness, likely

enhancing light scattering within the canopy. A pronounced correlation was observed
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between the diffuse reflection coefficient (k(4)) and wavelength (Fig. 9). This
relationship aligns with the known wavelength dependence of leaf spectral reflectance
[74]. The refractive index (n(d)) demonstrated a negative correlation with leaf
thickness and specific leaf weight (Fig. 9). This finding suggests that thinner leaves in
the upper layer tend to transmit more light, which could be advantageous in light
distribution and utilization for the whole canopy, particularly for species such as maize
and poplar [75]. These new observations provide a new dimension of crop canopy
engineering, i.e. manipulating the leaf optical properties instead of canopy architectures

for a better light environment inside a canopy for greater efficiency.

Effectiveness of the EL. Model for Predicting Optical Properties

Our ensemble learning (EL) model effectively predicted leaf optical properties (a(A),
k(2) and n(1)) based on phenotypic traits, with high accuracy (R? > 0.83 for all
parameters, as shown in Fig. 10). However, the relative weaker predictive power
for n(1) (R? = 0.83) suggests unaccounted factors, such as leaf water content [26] or
other tissues [54], influence the leaf refractive index. The dominance of p highlights
the critical role of epidermal microstructure in controlling the roughness parameter
o(A), consistent with previous studies linking surface topology to directional scattering.
The significant contribution of A reflects the wavelength-dependent variation in
pigment absorption and scattering, affecting both the diffuse reflection coefficient
k(A) and refractive index n(4). Meanwhile, SLW and chlorophyll-related traits
contributed secondarily, indicating that leaf thickness and pigment composition
modulate internal light transmission and absorption. Together, these findings
demonstrate that the EL model not only achieved accurate prediction but also captured
biologically interpretable relationships between leaf structure, pigment composition,

and BRDF parameters.

Biological Relevance and Future Directions
Our findings underscore that leaf optical properties represent an important yet
underutilized dimension of plant phenotyping. The correlations between BRDF
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parameters and phenotypic traits such as leaf thickness, pigment composition, and
surface microstructure highlight the potential of optical phenotyping to reveal
functional adaptations of plant leaves. By integrating BRDF-predicted parameters into
3D canopy photosynthesis models, this framework enables virtual experiments for
testing how structural or biochemical modifications affect canopy-scale light
distribution, providing a foundation for data-driven crop ideotype design. Furthermore,
when integrated with 3D point cloud data acquired from phenotyping platforms, the
proposed method allows indirect scalable evaluation of canopy light distribution and
photosynthetic efficiency, supporting computational phenotyping of canopy
photosynthesis.

As the current dataset covers four representative species across two canopy
positions, this limited biological diversity constrains the generalizability of the
predictive model. The present study primarily focuses on developing an integrated
hardware—software framework for predicting leaf optical properties from structural and
biochemical traits, rather than achieving exhaustive species coverage. The selected
species were chosen to represent both monocotyledonous and dicotyledonous groups,
ensuring methodological diversity rather than taxonomic completeness. It is noteworthy
that the prediction model for certain optical parameter, such as surface roughness (o),
could be relatively conserved across species because they primarily depend on
epidermal microstructure. In contrast, models for predicting parameters like the diffuse
reflection coefficient (k) and refractive index (n) might exhibit species- and condition-
specific variability, driven by biochemical composition and internal tissue organization.

Future studies should expand this framework across genotypes, environmental
conditions, and stress treatments to construct universal predictive models for leaf
optical behavior. The combination of optical phenotyping, machine learning, and
radiative transfer modeling represents a promising direction for next-generation plant
phenomics, where digital and computational tools jointly enable predictive

understanding of plant function and light-use efficiency.
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Conclusion

This study establishes an integrated framework that bridges optical physics and plant
phenomics by combining a custom-designed Directional Spectrum Detection
Instrument (DSDI), Bidirectional Reflectance Distribution Function (BRDF) modeling,
and ensemble learning (EL) model. The framework enables accurate and scalable
quantification of leaf optical properties and provides the predictive relationship
between BRDF parameters and leaf phenotypic traits across multiple species. The
DSDI system precisely measures directional reflectance, while roughness (o), diffuse
reflection coefficient (k), and refractive index (n), capture key mechanisms governing
leaf light scattering and absorption. The EL model achieved high prediction accuracy
(R?=0.83-0.99), demonstrating that leaf structural and biochemical traits can reliably
predict optical behavior. Ray-tracing simulations further confirmed that BRDF
parameters strongly influence canopy light distribution, highlighting their importance
for parameterizing 3D canopy photosynthesis models. Overall, this work advances
phenomics-oriented optical characterization by linking measurable leaf traits to
canopy-scale light modeling, providing a scalable, data-driven pathway toward

predictive phenotyping and digital crop design for improved photosynthetic efficiency.

Acknowledgments

We would like to thank Jinze Hong, Hanyue Sun, Yunzhu Yu and Yuhui Liu for assistant
of data measurements. Funding: We acknowledge the financial support of the National
Natural Science Foundation of China (32270428) to Q.S., the Earmarked Fund for
XJARS-Cotton (XJARS-03) to Y.Z., Open Project of the Key Laboratory of Oasis Eco-
agriculture, Xinjiang Production and Construction Corps (202102) to Q.S.,
the Strategic  Priority Research Program of the Chinese Academy of
Sciences (XDB0630300) to Q. S. and X. Z., the Shanghai Rising-Star Program
(21QC1401200) to Q. S. . Author Contributions: X.Z. and Q.S. designed and
conceived the study. Q.S. developed the equipment and ray tracing software. Q.S., L.M.,
and Y.W. performed the experiments. L.X.Y., X.G., and M.W. developed software for

35



853
854
855

856

857
858
859
860
861

862

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

image analysis, L.D. and Q.S. analyzed the data, built models and wrote the paper with
the inputs from all authors. Y.Z., Q.S., and X.Z. supervised the study. Competing

interests: The authors declare that they have no competing interests.

Data Availability

The source code used in this study is available for noncommercial use and the code can

be downloaded from https://github.com/PlantSystemsBiology/brdf. The updated ray
tracing in this study is available for noncommercial use and the code can be downloaded

from https://github.com/PlantSystemsBiology/fastTracerPublic. The data of this study

are available from the corresponding author upon request.

Supplementary Materials

Introduction for directional spectrum detection instrument developed in this
study.

Figure S1. Schematic diagram and photograph of the custom-built Directional
Spectrum Detection Instrument (DSDI).

Table S1. HPX-2000 high-power xenon light source specifications.

Table S2. HR-2000 high-resolution fiber optic spectrometer specifications.

Figure S2. The reflect light intensity of standard white board at different zenith angles.
Figure S3. The relationship between the reflect light intensity of standard white-board
and cos (0).

Introduction for the roughness calculator software developed in this study.
Figure S4. The interface of the RC software.

Figure S5. The pop-up interface of upload window.

Figure S6. The interface after calculated parameters of the whole region.

Figure S7. The interface after calculated parameters of the region of interest.

Figure S8. Correlation between leaf surface roughness (p) and BRDF roughness
parameter (g (1)) for four plant species.

Ray tracing simulations for evaluation of canopy scattered light distribution

36


https://github.com/PlantSystemsBiology/brdf
https://github.com/PlantSystemsBiology/fastTracerPublic

880
881
882
883
884
885
886
887
888
889
890
891
892
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(k=0.01).
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