A Complete Workflow Guide: Using VS Code, Miniconda, and Git for Research Projects
· 阅读需 4 分钟
Project Overview
This playbook outlines a reproducible workflow for Python-focused research—ideal for data analysis, remote sensing, crop modeling, and computational plant science. Follow the sections in order or jump to the one you need.
A Complete Workflow Guide: Using VS Code, Miniconda, and Git for Research Projects
1. Environment Setup
1.1 Install Visual Studio Code
- Download the installer from code.visualstudio.com.
- Recommended extensions: Python (Microsoft), Jupyter, GitLens, Pylance, Markdown All in One, Remote - SSH.
1.2 Install Miniconda
- Download from docs.conda.io/en/latest/miniconda.html.
- Verify the installation:
conda --version
- Keep Conda updated:
conda update conda
1.3 Install Git
- Download from git-scm.com/downloads.
- Confirm the version and configure your identity:
git --version
git config --global user.name "Your Name"
git config --global user.email "you@example.com"
2. Project Initialization and Environment Management
2.1 Create the Project Folder
mkdir cotton_modeling
cd cotton_modeling
2.2 Initialize Git
git init
2.3 Create the Conda Environment
conda create -n cotton python=3.10
conda activate cotton
2.4 Install Core Packages
conda install numpy pandas matplotlib scikit-learn
conda install -c conda-forge opencv open3d
2.5 Share the Environment
conda env export > environment.yml
To reproduce the environment elsewhere:
conda env create -f environment.yml
3. Set Up the Project in VS Code
3.1 Open the Workspace
- Launch VS Code →
File > Open Folder…→ choose the project directory. - Select the Python interpreter (
Command Palette > Python: Select Interpreter) and pickconda: cotton.
3.2 Suggested Project Structure
cotton_modeling/
├── data/ # Raw & processed datasets (not committed)
├── notebooks/ # Jupyter notebooks
├── scripts/ # Core Python modules
│ ├── preprocessing.py
│ ├── modeling.py
│ └── visualization.py
├── results/ # Generated figures, tables, reports
├── environment.yml # Conda spec for reproducibility
├── README.md # Project overview and usage
└── .gitignore
3.3 .gitignore Essentials
__pycache__/
*.pyc
*.ipynb_checkpoints
data/
results/
.env
4. Git Workflow (Single Researcher)
4.1 Stage and Commit Changes
git add .
git commit -m "Initial commit: data preprocessing pipeline"
4.2 Connect to GitHub
git remote add origin https://github.com/yourname/cotton_modeling.git
git branch -M main
git push -u origin main
4.3 Sync Regularly
git pull origin main
git push origin main
4.4 Use Feature Branches
git checkout -b feature-light-simulation
# Implement changes...
git add .
git commit -m "Add light simulation module"
git push origin feature-light-simulation
5. Collaboration Workflow
-
Fork the repository and clone locally:
git clone https://github.com/leader/cotton_modeling.git -
Create a feature branch:
git checkout -b analysis-update -
Commit and push updates:
git add .
git commit -m "Update canopy reflectance model"
git push origin analysis-update -
Open a pull request on GitHub for review and merging.
6. Maintenance and Reproducibility
- Keep environments current:
conda env export > environment.yml - Document clearly: Maintain
README.mdwith project overview, requirements, usage, and data notes; use docstrings for modules. - Tag releases:
git tag -a v1.0 -m "First release"thengit push origin v1.0. - Manage data responsibly: Keep raw data read-only, avoid committing large binaries, update
.gitignoreto exclude generated files.
7. Typical Research Project Flow
- Initialize the repository with Git.
- Create and activate the Conda environment.
- Develop scripts and notebooks in VS Code.
- Commit frequently and push to GitHub.
- Branch for experiments or new modules.
- Export results and environment descriptors.
- Reference commit hashes or tags in publications for transparency.
8. Common Issues and Fixes
| Issue | Quick Fix |
|---|---|
| VS Code cannot find the Conda environment | Use Python: Select Interpreter and choose the correct Conda env. |
git push authentication errors | Refresh your GitHub token or sign in again using gh auth login. |
| Conda dependency conflicts | Run conda clean --all or recreate the environment from environment.yml. |
| Jupyter kernel missing | Install kernel: python -m ipykernel install --user --name=cotton. |
9. Final Notes
Adopting VS Code, Miniconda, and Git as a unified workflow delivers:
- Reproducibility: every environment and code change is versioned.
- Transparency: collaboration and provenance are traceable.
- Efficiency: tooling accelerates experimentation and debugging.
Author: Liangchao Deng
Website: smiler488.github.io












